
BONDING

 How many valence electrons must an atom have in its outer energy level in order to be considered stable? _____

- Use electronegativity values to validate that NaCl is predominately ionic.
- Use electronegativity values to validate that CaF₂ is predominately ionic.

COVALENT BONDS

- Electrons are (transferred or shared).
- Covalent bonds occur between 2 nonmetals because nonmetals hold onto their
 ______ electrons. They can't give away electrons to bond, yet, they still
 want noble gas configuration.

Properties: low melting points and boiling points because the forces between molecules are ______; are poor conductors of electricity, so they are considered nonelectrolytes; tend to be gases, liquids or ______ solids; many are polar in nature; electronegativity difference for two elements in a covalent compound is ______ than 1.7.

5) Use electronegativity values to validate that CO_2 is predominately covalent.

6) Do atoms that share a covalent bond have an ionic charge?

7) Ionic (I), covalent (C), or both (B)?

a) NaCl _____ b) CaCO3 ____ c) CS2 ____ d) Zn3PO4 ____

e) GaH3 ____ f) N2O5 ____ g) H2O ____ h) CuO ____

i) FCl ____ j) SO3 ____ k) SiCl4 ____ l) BN ____

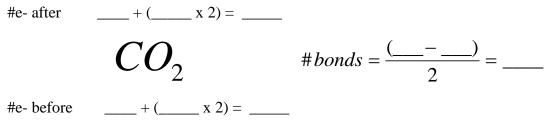
MULTIPLE BONDS

A single bond is formed from the sharing of ____ valence electrons, a double bond from 4 valence electrons, and a triple bond from ____ valence electrons.

Bond strength trend: ______

Bond length trend: ______

Bond energy (bond enthalpy) is the energy required to ______ a bond. Stronger bonds have greater bond energy.


Bond energy trend: _______

Hydrogen and the halogens CANNOT form double or triple bonds!

THE WETTER WAY

 $\#bonds = \frac{\Sigma e - E - \Sigma e - E}{2}$

Apply the Wetter Way to CO₂ and sketch the Lewis dot diagram.

Bonding – page 3

Apply the Wetter Way to NH₃ and sketch the Lewis dot diagram.

#e-after ____+ (____x 3) = ____ NH_3 #bonds = $\frac{(___--__)}{2}$ = ____

#e- before _____+ (_____ x 3) = _____

8) On your own paper, determine the number of bonds and draw the dot-dash diagram for HBr.

9) On your own paper, determine the number of bonds and draw the dot-dash diagram for N_2 .

10) On your own paper, determine the number of bonds and draw the dot-dash diagram for HCN.

MACROMOLECULES AND NETWORK SOLIDS

Macromolecules have large numbers of atoms linked by bone	ds.
Macromolecules have melting and boiling points and are frequently brittle. There are 4	
basic kinds of biological macromolecules. These are carbohydrates (like starch), lipids (like fats), nuclei	
acids (like), and proteins. Macromolecules are in your and	fingernails.
Man-made macromolecules include polymers like PVC and A netw	v ork solid is
a macromolecule in which the atoms are bonded in a cor	ntinuous network.
In a network solid there are no individual molecules and the entire crystal is the molecule. Examples of	
network solids include diamond, quartz and	

METALLIC BONDS

Metals hold onto their valence electrons very weakly. The electrons are said to be _______. Metal atoms release their valence electrons into a _______ of electrons shared by all of the metal atoms. The bond that results from this shared pool of valence electrons is called a **metallic bond**. Metals are good electrical and thermal _______ due to their free valence electrons. Metals generally have extremely high melting points and boiling points because it is difficult to pull metal atoms completely away from the group of cations and attracting electrons. Metals are _______ (able to be hammered into sheets) and are also ________ (able to be drawn into wire) because of the mobility of the particles. Metals have _______ (are shiny). A mixture of elements that has metallic properties is called an _______.