CHEMICAL REACTIONS

All chemical reactions have two parts:
(1) A substance that undergoes a reaction is called a \qquad . In other words, reactants are the substances you start with.
(2) When reactants undergo a chemical change, each new substance formed is called a
\qquad . In other words, the products are the substances you end up with. The reactants turn into the products.

$$
\text { Reactants } \rightarrow \text { Products }
$$

In a chemical reaction, the way atoms are joined is changed. Atoms aren't or destroyed.

1) Convert the following sentences to chemical equations.
a) Solid iron (III) sulfide reacts with gaseous hydrogen chloride to form solid iron (II) chloride and hydrogen sulfide gas.
b) Nitric acid dissolved in water reacts with solid sodium carbonate to form liquid water and carbon dioxide gas and sodium nitrate dissolved in water.
2) Convert the following chemical equations to sentences.
a) $\mathrm{Fe}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$ \qquad
b) $\mathrm{Cu}(\mathrm{s})+\mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Ag}(\mathrm{s})+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$ \qquad

BALANCING EQUATIONS

Atoms can't be \qquad or destroyed. All the atoms we start with we must end up with. A balanced equation has the same number of each element on both \qquad of the equation.

Rules for Balancing

$>$ Write the correct formulas for all the reactants and products.
$>$ Count the number of atoms of each type appearing on both sides.
> Balance the elements one at a time by adding coefficients (the numbers in front).
> Check to make sure it is balanced.
Never change a \qquad to balance an equation. If you change the formula you are describing a different reaction. Never put a coefficient in the middle of a formula. 2 NaCl is okay; Na 2 Cl is not. Coefficients are used as \qquad . Balance elements in the following order: (1) metals; (2) nonmetals; (3) hydrogen; and (4) oxygen If an atom appears more than once on a side, balance it \qquad _.

If you fix everything except one element, and it is even on one side and odd on the other, double the first number, then move on from there.
3. Balance the following equations.
a) \qquad $\mathrm{CH}_{4}+$ \qquad $\mathrm{O}_{2} \rightarrow$ \qquad $\mathrm{CO}_{2}+$ \qquad $\mathrm{H}_{2} \mathrm{O}$
b) \qquad $\mathrm{AgNO}_{3}+$ \qquad $\mathrm{Cu} \rightarrow$ \qquad $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+$ \qquad Ag
c) \qquad Mg + \qquad $\mathrm{N}_{2} \rightarrow$ \qquad $\mathrm{Mg}_{3} \mathrm{~N}_{2}$
d) \qquad P + \qquad $\mathrm{O}_{2} \rightarrow$ \qquad $\mathrm{P}_{4} \mathrm{O}_{10}$
e) \qquad $\mathrm{Na}+$ \qquad $\mathrm{H}_{2} \mathrm{O} \rightarrow$ \qquad $\mathrm{H}_{2}+$ \qquad NaOH
f) \qquad $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+$ \qquad $\mathrm{K}_{2} \mathrm{CrO}_{4} \rightarrow$ \qquad $\mathrm{PbCrO}_{4}+$ \qquad KNO_{3}
g) \qquad $\mathrm{MnO}_{2}+$ \qquad $\mathrm{HCl} \rightarrow$ \qquad $\mathrm{MnCl}_{2}+$ \qquad $\mathrm{H}_{2} \mathrm{O}+$ \qquad Cl_{2}
h) \qquad $\mathrm{Ba}(\mathrm{CN})_{2}+$ \qquad $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ \qquad $\mathrm{BaSO}_{4}+$ \qquad HCN
i) \qquad $\mathrm{Zn}(\mathrm{OH})_{2}+$ \qquad $\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow$ \qquad $\mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2}+$ \qquad $\mathrm{H}_{2} \mathrm{O}$

4) Write and balance the following synthesis reactions.
a) $\mathrm{Ca}+\mathrm{Cl}_{2} \rightarrow$
b) $\mathrm{Fe}+\mathrm{O}_{2} \rightarrow$

HINT: Use iron (II).
c) $\mathrm{K}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow$
d) $\mathrm{Al}+\mathrm{O}_{2} \rightarrow$
e) $\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow$
f) $\mathrm{N}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow$

SYNTHESIS REACTIONS

Whenever two or more substances combine to form ___ single product, the reaction is called a synthesis reaction.
Key: $M=$ Metal ; $N M=$ Nonmetal

1. SYNTHESIS:

a. Formation of binary compound:

$$
A+B \rightarrow A B
$$

b. Metal oxide and water:
$\mathrm{MO}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ base
(A base is a metallic \qquad .)
c. Nonmetal oxide and water:
$(\mathrm{NM}) \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ acid
(The acid will be a \qquad acid.)

Always remember to check the oxidation numbers of the ions in the product to see if you need to criss-cross before balancing.

5) Use the Chemistry Reference Tables to write and balance the following decomposition reactions.
a) $\mathrm{KClO}_{3} \rightarrow$
b) $\mathrm{CaBr}_{2} \rightarrow$
c) $\mathrm{Li}_{2} \mathrm{CO}_{3} \rightarrow$
d) $\mathrm{Cr}(\mathrm{OH})_{2} \rightarrow$
e) $\mathrm{NaHCO}_{3} \rightarrow$
f) $\mathrm{HNO}_{2} \rightarrow$ (Dinitrogen trioxide one of the products.)

SINGLE REPLACEMENT

In a single-displacement reaction, one element takes the place of another in a compound. One reactant must be an element, and the one reactant must be a \qquad . The products will be a different element and a different compound. Remember zinc, Zn , always forms a \qquad ion doesn't need parenthesis. In addition, silver, Ag, always forms a \qquad ion. Some single replacement reactions do not occur because some elements are not as \qquad as others. A more active element \qquad a less active element. There is a list referred to as the Activity Series on page 7 of your Chemistry Reference Packet. A higher element on the list replaces lower element. If the element by itself is lower on the list, the reaction will \qquad occur.

SINGLE REPLACEMENT, CONT.

a. Metal-Metal replacement: $\mathbf{A}+\mathbf{B C} \rightarrow \mathbf{A C}+\mathbf{B}$
b. Active metal replaces H from water: $\mathbf{M + \mathbf { H } _ { \mathbf { 2 } } \mathbf { O } \rightarrow \mathbf { M O H } + \mathbf { H } _ { \mathbf { 2 } } , ~}$
c. Active metal replaces H from acid: $\mathbf{M + H X} \rightarrow \mathbf{M X}+\mathbf{H}_{\mathbf{2}}$
d. Halide-Halide replacement: $\mathbf{D}+\mathbf{B C} \rightarrow \mathbf{B D}+\mathbf{C}$
6. Write and balance the following single replacement reactions.
a) $\mathrm{Rb}+\mathrm{AlN} \rightarrow$
f) $\mathrm{Cr}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow$
(HINT: Use Cr^{3+})
b) $\mathrm{Zn}+\mathrm{HCl} \rightarrow$
g) $\mathrm{Ca}+\mathrm{H}_{2} \mathrm{O}($ steam $) \rightarrow$
c) $\mathrm{Ag}+\mathrm{CoBr}_{2} \rightarrow$
h) $\mathrm{Br}_{2}+\mathrm{KCl} \rightarrow$
d) $\mathrm{Ag}+\mathrm{H}_{2} \mathrm{O}($ steam $) \rightarrow$
i) $\mathrm{Cl}_{2}+\mathrm{KI} \rightarrow$
e) $\mathrm{Cu}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$

DOUBLE REPLACEMENT

In double-displacement reactions, the positive portions of two \qquad compounds are interchanged. The reactants must be two ionic compounds or
\qquad . Double replacement reactions usually take place in
\qquad solution. The \qquad ions change place.

You must check to see if you need to criss-cross the products and then balance. A double replacement reaction will only happen if one of the products: (i) doesn't dissolve in water and forms a \qquad , (2) is a \qquad that bubbles out, or (3) is a \qquad compound usually water.

DOUBLE REPLACEMENT: AB + CD \rightarrow AD + CB

a. Formation of a precipitate from solution
b. Acid-Base neutralization
(1)

NET IONIC EQUATIONS
In molecular equations, the formulas of the compounds are written as though all species existed as molecules or whole units. An ionic equation shows dissolved \qquad compounds in terms of their free ions. Ions that are not involved in the overall reaction are called
\qquad ions. The net ionic equation indicates only the species that actually take part in the reaction. The following steps are useful for writing ionic and net ionic equations:

1) Write a balanced \qquad equation for the reaction.
2) Rewrite the equation to indicate which substances are in ionic form in
 solution. Remember that all soluble salts (and other strong electrolytes), are completely dissociated into \qquad and anions. This procedure gives us the ionic equation.
3) Lastly, identify and cancel spectator ions on both sides of the equation to arrive at the net ionic equation.

7. Write and balance the following double replacement reactions. Assume the reaction takes place. In addition, identify the precipitate and write the net ionic equation.
a) $\mathrm{CaCl}_{2}+\mathrm{NaOH} \rightarrow$
b) $\mathrm{CuCl}_{2}+\mathrm{K}_{2} \mathrm{~S} \rightarrow$
c) $\mathrm{KOH}+\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \rightarrow$
d) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+\mathrm{BaF}_{2} \rightarrow$
8. Write and balance the following acid-base double replacement reactions.
a) $\mathrm{HCl}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow$
b) $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{CuOH} \rightarrow$

COMBUSTION

A combustion reaction is one in which a substance rapidly combines with
\qquad to form one or more oxides. Combustion reactions involve a compound composed of only \qquad and H (and maybe O) that is reacted with oxygen gas. If the combustion is complete, the products will be CO_{2} and \qquad .

Combustion reactions produce heat, and are therefore considered
\qquad reactions.

$$
\text { Hydrocarbon + oxygen } \rightarrow \text { carbon dioxide + water }
$$

A hydrocarbon is a compound that contains both \qquad and carbon.

9. Complete and balance the following combustion reactions.
a) $\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{O}_{2} \rightarrow$
b) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2} \rightarrow$
c) $\mathrm{C}_{8} \mathrm{H}_{8}+\mathrm{O}_{2} \rightarrow$
d) $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}+\mathrm{O}_{2} \rightarrow$

How to Recognize Which Reaction Type: Look at the reactants. $(E=$ element; $C=$ compound)

$$
\begin{array}{ll}
E+E \text { or oxide + water } & \text { Synthesis } \\
C & \text { Decomposition } \\
E+C & \text { Single replacement } \\
C+C & \text { Double replacement } \\
\text { hydrocarbon }+\mathrm{O}_{2} & \text { Combustion }
\end{array}
$$

10. Identify whether the reaction is synthesis (S), decomposition (D), single replacement (SR), double replacement (DR) or combustion (C).
\qquad
a) $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow$ \qquad e) $\mathrm{KBr}+\mathrm{Cl}_{2} \rightarrow$
\qquad b) $\mathrm{H}_{2} \mathrm{O} \rightarrow$

-

f) $\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$
\qquad c) $\mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{3} \rightarrow$
-
g) $\mathrm{AgNO}_{3}+\mathrm{NaCl} \rightarrow$
\qquad h) $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow$

BALANCING EQUATIONS WORKSHEET

On your own paper, balance the following equations.
SYNTHESIS

1. $\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}$
2. $\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}$
3. $\mathrm{P}+\mathrm{O}_{2} \rightarrow \mathrm{P}_{2} \mathrm{O}_{3}$
4. $\mathrm{Mg}+\mathrm{N}_{2} \rightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}$
5. $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{NO}_{2}$
6. $\mathrm{Na}+\mathrm{O}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{O}$
7. $\mathrm{Cu}+\mathrm{S} \rightarrow \mathrm{Cu}_{2} \mathrm{~S}$
8. $\mathrm{Al}+\mathrm{N}_{2} \rightarrow \mathrm{AlN}$
9. $\mathrm{Hg}+\mathrm{I}_{2} \rightarrow \mathrm{HgI}_{2}$
10. $\mathrm{Fe}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}$

DECOMPOSITION

11. $\mathrm{HgO} \rightarrow \mathrm{Hg}+\mathrm{O}_{2}$
12. $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MgSO}_{4}+\mathrm{H}_{2} \mathrm{O}$
13. $\mathrm{KClO}_{3} \rightarrow \mathrm{KCl}+\mathrm{O}_{2}$
14. $\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$
15. $\mathrm{NaNO}_{3} \rightarrow \mathrm{NaNO}_{2}+\mathrm{O}_{2}$
16. $\mathrm{BaO}_{2} \rightarrow \mathrm{BaO}+\mathrm{O}_{2}$
17. $\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
18. $\mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2}+\mathrm{O}_{2}$
19. $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
20. $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}+\mathrm{O}_{2}$

SINGLE REPLACEMENT (SINGLE DISPLACEMENT)
21. $\mathrm{AlI}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{AlCl}_{3}+\mathrm{I}_{2} \quad$ 22. $\mathrm{CH}_{4}+\mathrm{Cl}_{2} \rightarrow \mathrm{CHCl}_{3}+\mathrm{HCl}$
23. $\mathrm{Al}+\mathrm{CuSO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{Cu}$
24. $\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{Al} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{Fe}$
25. $\mathrm{Zn}+\mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
26. $\mathrm{ZnS}+\mathrm{O}_{2} \rightarrow \mathrm{ZnO}+\mathrm{SO}_{2}$
27. $\mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+\mathrm{H}_{2}$
28. $\mathrm{Al}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2}$
29. $\mathrm{Zn}+\mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{ZnO}_{2}+\mathrm{H}_{2}$
30. $\mathrm{AgNO}_{3}+\mathrm{Zn} \rightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Ag}$

DOUBLE REPLACEMENT
31. $\mathrm{Fe}(\mathrm{OH})_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O} \quad$ 32. $\mathrm{AgNO}_{3}+\mathrm{K}_{2} \mathrm{CrO}_{4} \rightarrow \mathrm{Ag}_{2} \mathrm{CrO}_{4}+\mathrm{KNO}_{3}$
33. $\mathrm{AgNO}_{3}+\mathrm{CuCl}_{2} \rightarrow \mathrm{AgCl}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
34. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{HCl} \rightarrow \mathrm{PbCl}_{2}+\mathrm{HNO}_{3}$
35. $\mathrm{MgCl}_{2}+\mathrm{NaOH} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{NaCl}$
36. $\mathrm{AgNO}_{3}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{Ag}_{2} \mathrm{~S}+\mathrm{HNO}_{3}$
37. $\mathrm{CaCO}_{3}+\mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{CO}_{3}$
38. $\mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NaCl} \rightarrow \mathrm{Hg}_{2} \mathrm{Cl}_{2}+\mathrm{NaNO}_{3}$
39. $\mathrm{BaCl}_{2}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \rightarrow \mathrm{BaCO}_{3}+\mathrm{NH}_{4} \mathrm{Cl}$
40. $\mathrm{Al}(\mathrm{OH})_{3}+\mathrm{NaOH} \rightarrow \mathrm{NaAlO}_{2}+\mathrm{H}_{2} \mathrm{O}$

COMBUSTION
41. $\mathrm{CH}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
42. $\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
43. $\mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
44. $\mathrm{C}_{5} \mathrm{H}_{8}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
45. $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
46. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

