CHEMICAL REACTIONS

All chemical reactions have two parts: (1) A substance that undergoes a reaction is called a ______. In other words, reactants are the substances you start with. (2) When reactants undergo a chemical change, each new substance formed is called a ______. In other words, the products are the substances you end up with. The reactants turn into the products. Reactants → Products In a chemical reaction, the way atoms are joined is changed. Atoms aren't ______ or destroyed.

DIATOMIC ELEMENTS

There are _____ elements that never want to be alone. They form diatomic molecules. H_2 , N_2 , O_2 , F_2 , _____, Br_2, I_2.

(1 + 7 pattern on the periodic table)

SIGNS OF A CHEMICAL REACTION

The following are indications that a chemical reaction has occurred: formation of a

_____, evolution of

a gas, _____ change,

and absorption or release of

WORDS, SYMBOLS AND ABBREVIATIONS

The arrow separates the reactants from the products. The arrow reads "reacts to _____. " The plus sign reads " _____." (s) after the formula implies the substance is a . (g) after the formula implies the substance is a gas. (l) after the formula implies the substance is a _____. (aq) after the formula implies the substance is aqueous, a solid dissolved in . _____ used after a product indicates a gas, same as (g). \downarrow used after a product indicates a _____, same as (s). indicates a reversible reaction. _____ or _____ shows that heat is supplied to the reaction. is used to indicate a catalyst used supplied, in this case platinum. A catalyst is a substance that _____ a reaction without being changed by the reaction. Enzymes are biological or _____ catalysts.

- 1) Convert the following sentences to chemical equations.
 - a) Solid iron (III) sulfide reacts with gaseous hydrogen chloride to form solid iron (II) chloride and hydrogen sulfide gas.
 - b) Nitric acid dissolved in water reacts with solid sodium carbonate to form liquid water and carbon dioxide gas and sodium nitrate dissolved in water.

2) Convert the following chemical equations to sentences.

a) Fe (s) + O₂ (g) \rightarrow Fe₂O₃ (s) _____

b) Cu (s) + AgNO₃ (aq) \rightarrow Ag (s) + Cu(NO₃)₂ (aq) _____

BALANCING EQUATIONS

Atoms can't be ______ or destroyed. All the atoms we start with we must end up with. A balanced equation has the same number of each element on both ______ of the equation. *Rules for Balancing*

- > Write the correct formulas for all the reactants and products.
- > Count the number of atoms of each type appearing on both sides.
- Balance the elements one at a time by adding coefficients (the numbers in front).

> Check to make sure it is balanced.

Never change a _________ to balance an equation. If you change the formula you are describing a different reaction. Never put a coefficient in the middle of a formula. 2 NaCl is okay; Na2Cl is not. Coefficients are used as _______. Balance elements in the following order: (1) metals; (2) nonmetals; (3) hydrogen; and (4) oxygen If an atom appears more than once on a side, balance it ______. If you fix everything except one element, and it is even on one side and odd on the other, double the first number, then move on from there. 3. Balance the following equations.

SINGLE REPLACEMENT

In a single-displacement reaction, one element takes the place of another in a compound. One reactant			
must be an element, and the one reactant must be a		The products will	
be a different element and a different compound. Remember zinc, Zn, always forms a			
ion doesn't need parenthesis. In addition, silver, Ag, always forms a ion. Some single			
replacement reactions do not occur because some elements are not as as others.			
A more active element	_ a less active element.	There is a list referred to	
as the Activity Series on page 7 of your Chemistry Reference Packet. A higher element on the list			
replaces lower element. If the element by itself is lower on the list, the reaction will occur.			

SINGLE REPLACEMENT, CONT.

- a. Metal-Metal replacement: $\mathbf{A} + \mathbf{BC} \rightarrow \mathbf{AC} + \mathbf{B}$
- b. Active metal replaces H from water: $\textbf{M} + \textbf{H}_2\textbf{O} \rightarrow \textbf{MOH} + \textbf{H}_2$
- c. Active metal replaces H from acid: $M + HX \rightarrow MX + H_2$
- d. Halide-Halide replacement: $\mathbf{D} + \mathbf{BC} \rightarrow \mathbf{BD} + \mathbf{C}$
- 6. Write and balance the following single replacement reactions.
 - a) Rb + AlN \rightarrow
 - b) $Zn + HCl \rightarrow$
 - c) Ag + CoBr₂ \rightarrow
 - d) Ag + H₂O (steam) \rightarrow
 - e) $Cu + H_2SO_4 \rightarrow$

DOUBLE REPLACEMENT

f) $Cr + H_3PO_4 \rightarrow$

h) $Br_2 + KCl \rightarrow$

i) $Cl_2 + KI \rightarrow$

g) Ca + H₂O (steam) \rightarrow

(HINT: Use Cr^{3+})

In double-displacement reactions, the positive portions of two			
compounds are interchanged. The reactants must be two ionic compounds or			
Double replacement reactions usually take place in			
solution. The ions change place.			
You must check to see if you need to criss-cross the products and then balance. A			
double replacement reaction will only happen if one of the products: (1) doesn't			
dissolve in water and forms a, (2) is a that bubbles			
out, or (3) is a compound usually water.			
DOUBLE REPLACEMENT: $AB + CD \rightarrow AD + CB$			
a. Formation of a precipitate from solution			
b. Acid-Base neutralization			

In molecular equations, the formulas of the compounds are written as though all species existed as molecules or whole units. An ionic equation shows dissolved ______ compounds in terms of their free ions. Ions that are not involved in the overall reaction are called ______ ions. The net ionic equation indicates only the species that actually take part in the reaction. The following steps are useful for writing ionic and net ionic equations:

- 1) Write a balanced _______ equation for the reaction.
- Rewrite the equation to indicate which substances are in ionic form in solution. Remember that all soluble salts (and other strong electrolytes), are completely dissociated into _________ and anions. This procedure gives us the ionic equation.
- 3) Lastly, identify and cancel spectator ions on both sides of the equation to arrive at the net ionic equation.

7. Write and balance the following double replacement reactions. Assume the reaction takes place. In addition, identify the precipitate and write the net ionic equation.

a) $CaCl_2 + NaOH \rightarrow$ b) $CuCl_2 + K_2S \rightarrow$ c) $KOH + Fe(NO_3)_3 \rightarrow$ d) $(NH_4)_2SO_4 + BaF_2 \rightarrow$

8. Write and balance the following acid-base double replacement reactions.

a) $HCl + Ca(OH)_2 \rightarrow$ b) $H_3PO_4 + CuOH \rightarrow$

COMBUSTION

A combustion reaction is one in which a substance rapidly combines with

to form one or more oxides. Combustion reactions involve a compound composed of only _____ and H (and maybe O) that is reacted with oxygen gas. If the combustion is complete, the products will be CO2 and _____ Combustion reactions produce heat, and are therefore considered reactions.

Hydrocarbon + oxygen \rightarrow carbon dioxide + water

A hydrocarbon is a compound that contains both ______ and carbon.

- 9. Complete and balance the following combustion reactions.
 - a) C₄H₁₀ + O₂ \rightarrow
 - b) $C_6H_{12}O_6 + O_2 \rightarrow$
 - c) $C_8H_8 + O_2 \rightarrow$
 - d) $C_3H_8O_3 + O_2 \rightarrow$

How to Recognize Which Reaction Type: Look at the reactants. ($\underline{\Gamma}$ = element; \underline{C} = compound)

E + E or oxide + water	Synthesis
С	Decomposition
E+C	Single replacement
C + C	Double replacement
hydrocarbon + O2	Combustion

10. Identify whether the reaction is synthesis (S), decomposition (D), single replacement (SR), double replacement (DR) or combustion (C).

_____ a) $H_2 + O_2 \rightarrow$ _____ e) KBr + Cl₂ \rightarrow _____ f) Zn + H₂SO₄ \rightarrow _____ b) $H_2O \rightarrow$ _____ c) Mg(OH)₂ + H₂SO₃ \rightarrow _____ g) AgNO₃ + NaCl \rightarrow

Chemical Reactions – page 7

BALANCING EQUATIONS WORKSHEET

On your own paper, balance the following equations.

- **SYNTHESIS** 2. S + O₂ \rightarrow SO₃ 1. $S + O_2 \rightarrow SO_2$ 3. $P + O_2 \rightarrow P_2O_3$ 5. N₂ + O₂ \rightarrow NO₂ 6. Na + O₂ \rightarrow Na₂O 4. Mg + N₂ \rightarrow Mg₃N₂ 7. Cu + S \rightarrow Cu₂S 8. Al + N₂ \rightarrow AlN 9. Hg + I₂ \rightarrow HgI₂ 10. Fe + O₂ \rightarrow Fe₂O₃
- **DECOMPOSITION** 11. HgO \rightarrow Hg + O₂ 12. MgSO₄·7H₂O \rightarrow MgSO₄ + H₂O 14. $NH_4NO_3 \rightarrow N_2O + H_2O$ 13. KClO₃ \rightarrow KCl + O₂ 15. NaNO₃ \rightarrow NaNO₂ + O₂ 16. BaO₂ \rightarrow BaO + O₂ 17. $H_2O_2 \rightarrow H_2O + O_2$ 18. NO₂ \rightarrow N₂ + O₂ 19. $CaCO_3 \rightarrow CaO + CO_2$ 20. H₂O \rightarrow H₂ + O₂

SINGLE REPLACEMENT (SINGLE DISPLACEMENT) 21. All₃ + Cl₂ \rightarrow AlCl₃ + I₂ 23. Al + CuSO₄ \rightarrow Al₂(SO₄)₃ + Cu 25. $Zn + HCl \rightarrow ZnCl_2 + H_2$ 27. Na + H₂O \rightarrow NaOH + H₂ 29. $Zn + NaOH \rightarrow Na_2ZnO_2 + H_2$

DOUBLE REPLACEMENT 33. $AgNO_3 + CuCl_2 \rightarrow AgCl + Cu(NO_3)_2$ 35. $MgCl_2 + NaOH \rightarrow Mg(OH)_2 + NaCl$ 37. $CaCO_3 + HCl \rightarrow CaCl_2 + H_2CO_3$ 39. $BaCl_2 + (NH_4)_2CO_3 \rightarrow BaCO_3 + NH_4Cl = 40$. $Al(OH)_3 + NaOH \rightarrow NaAlO_2 + H_2O_3$

COMBUSTION 41. $CH_4 + O_2 \rightarrow CO_2 + H_2O$ 43. $C_3H_6 + O_2 \rightarrow CO_2 + H_2O$ 45. $CH_3OH + O_2 \rightarrow CO_2 + H_2O$

- 22. $CH_4 + Cl_2 \rightarrow CHCl_3 + HCl$ 24. $Fe_2O_3 + Al \rightarrow Al_2O_3 + Fe$ 26. ZnS + O₂ \rightarrow ZnO + SO₂ 28. Al + H₂SO₄ \rightarrow Al₂(SO₄)₃ + H₂ 30. AgNO₃ + Zn \rightarrow Zn(NO₃)₂ + Ag
- 31. $Fe(OH)_3 + H_2SO_4 \rightarrow Fe_2(SO_4)_3 + H_2O = 32$. $AgNO_3 + K_2CrO_4 \rightarrow Ag_2CrO_4 + KNO_3$ 34. $Pb(NO_3)_2 + HCl \rightarrow PbCl_2 + HNO_3$ 36. $AgNO_3 + H_2S \rightarrow Ag_2S + HNO_3$ 38. $Hg_2(NO_3)_2 + NaCl \rightarrow Hg_2Cl_2 + NaNO_3$
 - 42. $C_4H_{10} + O_2 \rightarrow CO_2 + H_2O$ 44. $C_5H_8 + O_2 \rightarrow CO_2 + H_2O$ 46. $C_6H_{12}O_6 + O_2 \rightarrow CO_2 + H_2O$