INTERMOLECULAR FORCES

CHEMICAL BONDS

.....

Recall that there are three fundamental types of bonding.

- 1) Ionic bonding
- 2) _____ bonding
- 3) Metallic bonding

Because ionic and covalent bonding uses electrostatic attractions between areas of full charge, the resulting force of attraction is ______.

INTERMOLECULAR FORCES

Intermolecular forces are a secondary method of holding a structure together. As the name implies, these are forces that exist ______ molecules. Bonds exist _____ molecules.

Some elements, such as the _____ Gases, exist with intermolecular forces and no bonding at all. Intermolecular forces exist in three different levels of strength. The three intermolecular forces (from strongest to weakest) are hydrogen bonding, dipole-dipole forces and ______ dispersion forces.

INTERMOLECULAR FORCES and POLAR MOLECULES

Polar molecules will have a partially positive side and a partially negative side, or a ______. The partial ______. The partial _______. positive on one molecule will be attracted to the partial negative on a second molecule. This attraction is an intermolecular force.

Because the molecules are polar, the force is either a dipole-dipole attraction or a ______ bond. Because these attractions are between areas of partial charge, they will

produce _____ forces of attraction. It will always break at the weak links – the dipole-dipole forces or Hydrogen bonds. The _____

bonds will remain intact.

HYDROGEN BONDING

When hydrogen is directly bonded to nitrogen, _____ or fluorine, then the system will be capable of Hydrogen bonding. In these systems, the difference between the _____ values of the bonded atoms will produce fairly large partial charges. As a result, the resulting intermolecular forces will be strong. They will still not be as strong as a true _____, however.

1. Determine the type of intermolecular force in each of the following compounds

a) BCl ₃	b) Xe
c) NH ₃	d) CH ₄
e) SO ₂	f) H ₂
g) SO ₃	h) CH ₃ Cl
i) HF	j) HBr