POLAR MOLECULES

A polar molecule is a molecule with one end having \qquad electrical charge and the other end having negative electrical charge.

This requires two things to be true:

1) The molecule must contain polar \qquad .
2) Symmetry cannot \qquad out the effects of the polar bonds.

VSEPR stands for Valence Shel
VSEPR

Repulsion. It predicts three-dimensional geometry of molecules. The valence shell includes the \qquad electrons. The electron pairs try to get as far away as possible to \qquad repulsion. VSEPR is based on the number of pairs of valence electrons, both bonded and non-bonded. An non-bonded pair of electrons is referred to as a \qquad pair. Use the Wetter Way to calculate the number of bonds and then draw the dot-dash diagram. The shape of the molecule, bond angle and polarity can be determined from this diagram.

LINEAR

Perform the Wetter Way for H_{2}. How many bonds are in this molecule? Sketch the dot-dash diagram. Please include all electrons.

The electrons attempt to maximize their distance from one another by having bond angle of \qquad ${ }^{\circ}$.

Linear compounds are NOT polar, unless the two elements are
\qquad . The hydrogen molecule is (polar or nonpolar).

$$
\mathrm{H}-\ddot{\mathrm{F}}:
$$

1) Is hydrogen fluoride (HF) polar? \qquad

2) Is water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ polar? \qquad

3) Is carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)$ polar? \qquad

4) Is trichloromethane $\left(\mathrm{CHCl}_{3}\right)$ polar? \qquad

5) Is ammonia $\left(\mathrm{NH}_{3}\right)$ polar?
\qquad

6) Is carbon dioxide $\left(\mathrm{CO}_{2}\right)$
polar? \qquad

BENT

Perform the Wetter Way for SO_{2}. How many bonds are in this molecule? Sketch the dot-dash diagram. Please include all electrons.

The electron pair forces the oxygen's closer together so the angle is \qquad than 120°. The shape is flat and called bent. The SO_{2} molecule is (polar or nonpolar).

TETRAHEDRAL

Perform the Wetter Way for CH_{4}. How many bonds are in this molecule? Sketch the dot-dash diagram. Please include all electrons.

The bonding electrons can maximize their distance from one another by forming a \qquad shape. The furthest they can get away is
\qquad ${ }^{\circ}$. This basic shape is a tetrahedral, a pyramid with a
triangular base. The CH_{4} molecule is (polar or nonpolar).

TRIGONAL PYRAMIDAL

Perform the Wetter Way for phosphorous trichloride $\left(\mathrm{PCl}_{3}\right)$. How many bonds are in this molecule? Sketch the dot-dash diagram. Please include all electrons.

BENT
Perform the Wetter way for water $\left(\mathrm{H}_{2} \mathrm{O}\right)$. How many bonds are in this molecule? Sketch the dot-dash diagram. Please include all electrons.

The shape is a basic tetrahedral but you can't see the \qquad lone pairs. A tetrahedral-like shape that has 2 attached elements and two lone pairs is called bent. The two electron pairs force the hydrogen's even closer to each other.

The bond angle between hydrogen's is
\qquad -. The $\mathrm{H}_{2} \mathrm{O}$ molecule is (polar or nonpolar).

Although water dissolves an enormous variety of substances, both ionic and covalent, it does not dissolve everything. The phrase that scientists often use when predicting solubility is " \qquad dissolves like."

Polar substances will dissolve in other substances that are
\qquad Nonpolar
substances dissolve in other
 nonpolar substances.

