Acids and Bases

Properties of Acids and Bases

Acids taste \qquad . Lemon juice and \qquad , for example, are both aqueous solutions of acids. Acids conduct electricity; they are \qquad . Some are strong electrolytes, while others are \qquad electrolytes. An acetic acid solution, which is a weak electrolyte, contains only a few ions and does not conduct as much current as a strong electrolyte. The bulb is only \qquad lit. Acids cause certain colored dyes
\qquad) to change color. (Litmus paper turns \qquad .) Acids cause the indicator phenolphthalein to turn \qquad . Acids react with metals to form
\qquad gas. This property explains why acids corrode most metals.

Example: $2 \mathrm{HBrO}_{3}+\mathrm{Zn} \rightarrow \mathrm{Zn}\left(\mathrm{BrO}_{3}\right)_{2}+\mathrm{H}_{2}$ Acids react with hydroxides (bases) to form water and a
\qquad . Example: $2 \mathrm{HNO}_{3}+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad$ Bases taste
\qquad and feel \qquad . Bases can be strong or weak electrolytes. Bases cause certain colored dyes (indicators) to change color. (Litmus paper turns
\qquad). Bases cause the indicator phenolphthalein to turn \qquad .

Bases react with acids to form water and a salt. Bases do not commonly \qquad with metals.

Naming Acids

Acids are compounds that give off \qquad ions $\left(\mathrm{H}^{+}\right)$when dissolved in water.

Acids will always contain one or more hydrogen ions next to an \qquad . The anion determines the name of the acid.

Naming Binary Acids

Binary acids contain hydrogen and an anion whose name ends in -ide. When naming the acid, put the prefix \qquad - and change -ide to -ic acid.

Example: HCl The acid contains the hydrogen ion and chloride ion. Begin with the prefix hydro-, name the nonmetallic ion and change -ide to -ic acid. \qquad
Example: $\mathrm{H}_{2} \mathrm{~S}$ The acid contains the hydrogen ion and sulfide ion. Begin with the prefix hydro- and name the nonmetallic ion. The next step is change -ide to -ic acid, but for sulfur the "ur" is added before ic. \qquad

1) Name the following binary acids.
a) HF \qquad
b) $\mathrm{H}_{3} \mathrm{P}$ \qquad

Writing the Formulas for Binary Acids

The prefix hydro- lets you know the acid is binary. Determine whether you need to criss-cross the oxidation numbers of hydrogen and the nonmetal.

Example: Hydrobromic acid The acid contains the hydrogen ion and the bromide ion. The two oxidation numbers add together to get zero. The prefix hydro- lets you know the acid is binary.

Example: Hydrotelluric acid The acid contains the hydrogen ion and the telluride ion. The two oxidation numbers do NOT add together to get zero, so you must criss-cross. \qquad
2) Write the formulas for the following binary acids.
a) Hydrocyanic acid \qquad b) Hydroselenic acid \qquad

Naming Ternary Acids

The acid is a ternary acid if the anion has oxygen in it. The anion ends in -ate or -ite. Change the suffix ate to - \qquad acid Change the suffix -ite to -ous acid The hydro- prefix is NOT used!

Example: HNO_{3} The acid contains the hydrogen ion and nitrate ion. Name the polyatomic ion and change -ate to -ic acid. \qquad
Example: HNO_{2} The acid contains the hydrogen ion and nitrite ion. Name the polyatomic ion and change -ite to -ous acid. \qquad
Example: $\mathrm{H}_{3} \mathrm{PO}_{4}$ The acid contains the hydrogen ion and phosphate ion. Name the polyatomic ion and change -ate to -ic acid.
3) Name the following ternary acids.
a) $\mathrm{H}_{2} \mathrm{CO}_{3}$ \qquad
b) $\mathrm{H}_{2} \mathrm{SO}_{4}$ \qquad
c) $\mathrm{H}_{2} \mathrm{CrO}_{4}$ \qquad
d) HClO_{2} \qquad

The lack of the prefix hydro- from the name implies the acid is ternary, made of the hydrogen ion and a polyatomic ion. Determine whether you need to criss-cross the oxidation numbers of hydrogen and the polyatomic ion.

Example: Acetic acid The polyatomic ion must end in -ate since the acid ends in -ic. The acid is made of H^{+}and the acetate ion. The two charges when added equal zero.

Example: Sulfurous acid Again the lack of the prefix hydro- implies the acid is ternary, made of the hydrogen ion and a polyatomic ion. The polyatomic ion must end in -ite since the acid ends in -ous. The acid is made of H^{+}and the sulfite ion. The two charges when added do not equal zero, so you must crisscross the oxidation numbers.
4) Write the formulas for the following ternary acids.
a) perchloric acid \qquad b) iodic acid \qquad
c) nitrous acid \qquad d) bromic acid \qquad

Types of Acids and Bases

Arrhenius Definitions - The simplest definition is that an acid is a substance that produces
\qquad ions when it dissolves in water. A hydronium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$, consists of a hydrogen ion attached to a \qquad molecule. A hydronium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$, is equivalent to H^{+}.

HCl and $\mathrm{H}_{3} \mathrm{PO}_{4}$ are acids according to Arrhenius. A base is a substance that produces
\qquad ions, OH^{-}, when it dissolves in water. $\mathrm{Ca}(\mathrm{OH})_{2}$ and NaOH are Arrhenius bases. NH_{3}, ammonia, could not be an Arrhenius \qquad . Monoprotic acids have only
\qquad ionizable hydrogen. Examples include $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and HCl .

Ionization reaction: $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \leftrightarrow \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$ \qquad acids have more than one ionizable hydrogen atom. Examples include $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$ (citric acid).

$$
\text { Ionization reaction: } \mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} \leftrightarrow \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{-}
$$

Bronsted-Lowry Definitions - A Bronsted-Lowry acid is a \qquad $\left(\mathrm{H}^{+}\right)$donor. HBr and $\mathrm{H}_{2} \mathrm{SO}_{4}$ are Bronsted-Lowry acids. When a Bronsted-Lowry acid dissolves in water it gives its proton Acids and Bases - page 3
to water. $\mathrm{HCl}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$A Bronsted-Lowry base is a proton \qquad .
$\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{BH}^{+}+\mathrm{OH}^{-} \quad$ A Bronsted-Lowry base does not need to contain OH^{-}.
Consider $\quad \mathrm{HCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{Cl}^{-}(a q) \quad \mathrm{HCl}$ donates a proton to water. Therefore, HCl is $\mathrm{a}(\mathrm{n})$ \qquad . $\mathrm{H}_{2} \mathrm{O}$ accepts a proton from HCl . Therefore, $\mathrm{H}_{2} \mathrm{O}$ is $\mathrm{a}(\mathrm{n})$ \qquad .
5) Identify the acid and base in the following reactions.
a) $\mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HSO}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

Acid

\qquad
b) $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \leftrightarrow \mathrm{NH}_{4}^{+}+\mathrm{HSO}_{4}^{-}$

Acid \qquad
base \qquad
base \qquad

Molarity and Dilution

The concentration of a solution is the amount of solute present in a given quantity of solution.
\qquad is the number of moles of solute in 1 liter of solution.

$$
\text { Molarity }=\frac{\text { moles of solute }}{\text { Liters of solution }}
$$

The procedure for preparing a less concentrated solution from a more concentrated one is called a
\qquad —.

$$
\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}
$$

6) What is the molarity of an acetic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)$ solution with 4.0 moles dissolved in 250 mL of solution?
7) How many moles of hydrochloric acid (HCl) are needed to make 3.0 L of a 0.55 M HCl solution?
8) 0.600 moles of the base sodium hydroxide (NaOH) are dissolved in a small amount of water then diluted to $500 . \mathrm{mL}$. What is the concentration?
9) 3.25 moles of the base potassium hydroxide (KOH) are dissolved in a small amount of water then diluted to 725 mL . What is the concentration?
10) How many moles are in 2.00 L of a 6.00 M solution of sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$?
11) How many moles are in 1250 mL of a 3.60 M solution of nitric acid $\left(\mathrm{HNO}_{3}\right)$?
12) 6.0 L of a 1.55 M LiOH solution are diluted to 8.8 L . What is the new molarity of the lithium hydroxide solution?
13) You have 250 mL of 6.0 M HCl . How many milliliters of 1.2 M HCl can you make?
14) 4.0 liters of a 0.75 M solution of sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ are diluted to a 0.30 M solution. What is the final volume?
15) You need 350 mL of 0.25 M NaOH . All you have available is a 2.0 M stock solution of NaOH . How do you make the required solution?

Strength of Acids and Bases

The strength of a base is based on the degree of \qquad . The strength of a base does NOT depend on the \qquad . 1A and \qquad hydroxides, excluding \qquad , are strong bases. Some bases, such as $\operatorname{Mg}(\mathrm{OH})_{2}$, are not very soluble in water, and they don't produce a large number of OH^{-}ions. However, they are still considered to be strong bases because all the base that does dissolve completely dissociates. The strength of an acid is based on the degree of dissociation. The strength of an acid does NOT depend on the \qquad . K_{a} is referred to as the acid dissociation \qquad . The greater the K_{a} value, the
\qquad the acid. There are 6 strong acids: $\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{HClO}_{4}, \mathrm{HNO}_{3}$, and $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Strong acids and bases are strong \qquad because they dissociate completely. Electrolytes conduct \qquad . Weak acids and bases don't completely ionize, so they are weak electrolytes. Although the terms weak and strong are used to compare the \qquad of acids and bases, dilute and concentrated are terms used to describe the \qquad of solutions.
pH Scale
Water ionizes; it falls apart into \qquad . $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}^{+}+\mathrm{OH}^{-}$The preceding reaction is called the \qquad of water. $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1 \times 10^{-7} \mathrm{M}$ When $\left[\mathrm{H}^{+}\right]=$ [OH^{-}], the solution is \qquad . At $25^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} \mathrm{~K}_{\mathrm{w}}$ is called the ion-product constant. If $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$, the solution is \qquad . The solution is
\qquad when $\left[\mathrm{OH}^{-}\right]>\left[\mathrm{H}^{+}\right]$. In most applications, the observed range of possible hydronium or hydroxide ion concentrations spans $10^{-14} \mathrm{M}$ to \qquad M. To make this range of possible concentrations easier to work with, the pH scale was developed. pH is a mathematical scale in which the concentration of hydronium ions $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$in a solution is expressed as a number from \qquad to
\qquad pH meters are instruments that measure the exact pH of a solution. Indicators register different colors at different pH 's. In neutral solution, $\mathrm{pH}=7$. In an acidic solution, $\mathrm{pH}<7$. In a basic solution, $\mathrm{pH}>7$. As the pH drops from 7, the solution becomes more acidic. As pH increases from 7, the solution becomes more basic.

The $\mathbf{p H}$ of a solution equals the negative logarithm of the hydrogen or hydronium ion concentration.

$$
\mathbf{p H}=-\log \left[\mathbf{H}^{+}\right]
$$

pH "goes with" the terms hydrogen and \qquad .

The $\mathbf{p O H}$ of a solution equals the negative logarithm of the hydroxide ion concentration.

$$
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]
$$

pOH "goes with" the term \qquad .

On the graphing calculator, hit
On a scientific calculator hit
$>(-)$

* the number
$>\log$
* \log
$>$ the number
* +/-

If either pH or pOH is known, the other may be determined by using the following relationship.

$$
\mathrm{pH}+\mathrm{pOH}=14.00
$$

16) Find the pH of the following solutions.
a) The hydronium ion concentration equals: $10^{-2} \mathrm{M}=1 \times 10^{-2} \mathrm{M} . \mathrm{pH}=$ \qquad
b) The hydrogen ion concentration equals: $10^{-11} \mathrm{M} \cdot \mathrm{pH}=$ \qquad
c) The hydronium ion concentration equals: $1 \times 10^{-6} \mathrm{M} . \mathrm{pH}=$ \qquad
d) The hydroxide ion concentration equals: $10^{-8} \mathrm{M} \cdot \mathrm{pH}=$ \qquad
e) The hydroxide ion concentration equals: $10^{-5} \mathrm{M} \cdot \mathrm{pH}=$ \qquad
f) The hydroxide ion concentration equals: $10^{-3} \mathrm{M} \cdot \mathrm{pH}=$ \qquad
17) If a certain carbonated soft drink has a hydrogen ion concentration of $1.0 \times 10^{-4} \mathrm{M}$, what are the pH and pOH of the soft drink?

More pH and pOH

18) Find the pH if the hydrogen ion concentration equals: $3.25 \times 10^{-3} \mathrm{M}$.

$$
\text { Acids and Bases - page } 6
$$

19) Find the pH if the hydroxide ion concentration equals: $7.36 \times 10^{-5} \mathrm{M}$.
20) Find the pOH if the hydroxide ion concentration equals: $8.34 \times 10^{-9} \mathrm{M}$.
21) Find the pOH if the hydronium ion concentration equals: $1.45 \times 10^{-4} \mathrm{M}$.

Calculating Ion Concentrations From pH

If either pH or pOH is known, the hydrogen ion or hydroxide ion can be found.

$$
\left[\mathrm{H}^{+}\right]=\mathbf{1 0}^{-\mathrm{pH}}
$$

$$
\left[\mathrm{OH}^{-}\right]=\mathbf{1 0}^{-\mathrm{pOH}}
$$

On the graphing calculator, hit

```
> 2
> log
> (-)
 and then the number.
```

On a scientific calculator hit

* the number
* +/-
* shift
* \log

Always check to see if the terms match! If they do not, subtract the $\mathrm{pH} / \mathrm{pOH}$ from 14 FIRST!
22) Find the $\left[\mathrm{H}^{+}\right]$of a solution that has a pH equal to 6 .
23) Find the $\left[\mathrm{H}^{+}\right]$of a solution that has a pH equal to 12 .
24) Find the $\left[\mathrm{H}^{+}\right]$of a solution that has a pH equal to 5 .
25) Find the $\left[\mathrm{H}^{+}\right]$of a solution that has a pOH equal to 6 .
26) Find the $\left[\mathrm{OH}^{-}\right]$of a solution that has a pOH equal to 6.
27) Find the $\left[\mathrm{H}^{+}\right]$of a solution that has a pOH equal to 2 .
28) Find the $\left[\mathrm{H}^{+}\right]$of a solution that has a pOH equal to 4 .
29) Find the $\left[\mathrm{OH}^{-}\right]$of a solution that has a pH equal to 10 .

More Calculating Ion Concentrations From pH

30) Find the $\left[\mathrm{H}^{+}\right]$of a solution that has a pH equal to 4.23 .
31) Find the $\left[\mathrm{H}^{+}\right]$of a solution that has a pOH equal to 6.34 .
32) Find the $\left[\mathrm{OH}^{-}\right]$of a solution that has a pH equal to 10.5 .
33) Find the $\left[\mathrm{OH}^{-}\right]$of a solution that has a pOH equal to 13.5 .

Calculating Ion Concentration From Ion Concentration

If either $\left[\mathrm{H}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$is known, the hydrogen ion or hydroxide ion can be found.

$$
\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}
$$

Acids and Bases - page 7
34) Find the hydrogen ion concentration if the hydroxide ion concentration equals: $1 \times 10^{-8} \mathrm{M}$.
35) Find the hydrogen ion concentration if the hydroxide ion concentration equals: $1 \times 10^{-2} \mathrm{M}$.
36) Find the hydroxide ion concentration if the hydrogen ion concentration equals: $1 \times 10^{-4} \mathrm{M}$.
37) Find the hydroxide ion concentration if the hydrogen ion concentration equals: $1 \times 10^{-9} \mathrm{M}$.
38) Find the hydrogen ion concentration if the hydroxide ion concentration equals: $3.25 \times 10^{-3} \mathrm{M}$.
39) Find the hydroxide ion concentration if the hydrogen ion concentration equals: $6.44 \times 10^{-6} \mathrm{M}$.

Indicators

Chemical \qquad whose colors are affected by acidic and basic solutions are called indicators. Many indicators do not have a sharp color change as a function of \qquad . Most indicators tend to be \qquad in more acidic solutions.

40) Which indicator is best to show an equivalence point pH of 4 ?
41) Which indicator is best to show an equivalence point pH of 11 ?
42) Which indicator is best to show an equivalence point pH of 2 ?

Neutralization Reactions

The reaction of an acid and a base is called a neutralization reaction. Acid + base \rightarrow salt + water salt is an \qquad compound.
43) Predict the products of and balance the following neutralization reactions. (Remember to check the oxidation numbers of the ions in the salt produced.)
a) $\mathrm{HNO}_{3}+\mathrm{KOH} \rightarrow$

The salt is composed of the \qquad ion of the base and the \qquad ion of the acid.
b) $\mathrm{HCl}+\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow$
c) $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NaOH} \rightarrow$

Neutralization

44) How many moles of HNO_{3} are needed to neutralize 0.86 moles of KOH ?

$$
\mathrm{KOH}+\mathrm{HNO}_{3} \rightarrow \mathrm{KNO}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

45) How many moles of HCl are needed to neutralize 3.5 moles of $\mathrm{Mg}(\mathrm{OH})_{2}$?

$$
2 \mathrm{HCl}+\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \mathrm{MgCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

46) How many moles of $\mathrm{H}_{3} \mathrm{PO}_{4}$ are needed to neutralize 3.5 moles of $\mathrm{Mg}(\mathrm{OH})_{2}$?

$$
2 \mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

47) How many moles of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ are needed to neutralize 3.5 moles of $\mathrm{Cr}(\mathrm{OH})_{3}$?

$$
3 \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{Cr}(\mathrm{OH})_{3} \rightarrow \mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{3}+6 \mathrm{H}_{2} \mathrm{O}
$$

48) If it takes 87 mL of an HCl solution to neutralize 0.67 moles of $\mathrm{Mg}(\mathrm{OH})_{2}$ what is the concentration of the HCl solution? $\quad 2 \mathrm{HCl}+\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \mathrm{MgCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
49) If it takes 58 mL of an $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution to neutralize 0.34 moles of NaOH what is the concentration of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution? $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
50) If it takes 85 mL of an HNO_{3} solution to neutralize 0.54 moles of $\mathrm{Mg}(\mathrm{OH})_{2}$ what is the concentration of the HNO_{3} solution? $2 \mathrm{HNO}_{3}+\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$
51) If it takes $150 . \mathrm{mL}$ of an $\mathrm{Ca}(\mathrm{OH})_{2}$ solution to neutralize 0.800 moles of HCl what is the concentration of the $\mathrm{Ca}(\mathrm{OH})_{2}$ solution? $\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Titration

The general process of determining the molarity of an acid or a base through the use of an acid-base reaction is called an acid-base \qquad . The known reactant molarity is used to find the unknown \qquad of the other solution. Solutions of known molarity that are used
in this fashion are called \qquad solutions. In a titration, the molarity of one of the reactants, acid or base, is known, but the other is unknown.
52) A $15.0-\mathrm{mL}$ sample of a solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ with an unknown molarity is titrated with 32.4 mL of $0.145 M \mathrm{NaOH}$ to the bromothymol blue endpoint. Based upon this titration, what is the molarity of the sulfuric acid solution? $\quad \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
53) If it takes 45 mL of a 1.0 M NaOH solution to neutralize 57 mL of HCl , what is the concentration of the $\mathrm{HCl} ? \mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
54) If it takes 67.0 mL of $0.500 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ to neutralize 15.0 mL of $\mathrm{Al}(\mathrm{OH})_{3}$ what was the concentration of the $\mathrm{Al}(\mathrm{OH})_{3} ? \quad 3 \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{Al}(\mathrm{OH})_{3} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{H}_{2} \mathrm{O}$
55) How many moles of 0.275 M HCl will be needed to neutralize 25.0 mL of 0.154 M NaOH ? $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

Titration Curves

A plot of \qquad versus volume of acid (or base) added is called a titration curve.

Strong Base-Strong Acid Titration Curve

Consider adding a strong base (e.g. NaOH) to a solution of a strong acid (e.g. HCl). Before any base is added, the pH is given by the strong \qquad solution.
Therefore, $\mathrm{pH}_{~ ـ _~ 7 . ~ W h e n ~ b a s e ~ i s ~ a d d e d, ~}^{\text {7 }}$ before the equivalence point, the pH is given by the amount of strong acid in
\qquad . Therefore,
$\mathrm{pH}<7$. At the \qquad point, the amount of base added is stoichiometrically equivalent to the amount of acid originally present.

Therefore, $\mathrm{pH}=$ \qquad . To detect the equivalence point, we use an indicator that changes _somewhere near 7.00. Past the equivalence point all acid has been consumed.
Thus one needs only to account for excess \qquad . Therefore, pH \qquad 7.

