Acids and Bases

Properties of Acids and Bases

Acids taste	Lemon juice and		, for example, are
both aqueous solutions of acids	. Acids conduct electricity; th	iey are	Some
are strong electrolytes, while of	hers are	electrolytes. An acetic aci	d solution, which is
a weak electrolyte, contains on	ly a few ions and does not con	duct as much current as a s	trong electrolyte.
The bulb is only	lit. Acids cause	certain colored dyes	
(_) to change color. (Litmus par	per turns) Acids cause the
indicator phenolphthalein to tur	m Acids rea	act with metals to form	
gas. T	his property explains why acid	ls corrode most metals.	
Example: $2HBrO_3 + Zn \rightarrow Zn($	$BrO_3)_2 + H_2$ Acids react with	hydroxides (bases) to form	n water and a
Exam	ple: $2HNO_3 + Ba(OH)_2 \rightarrow Ba$	$a(NO_3)_2 + 2H_2O$ Bases take	ste
	and feel	Bases can be s	trong or weak
electrolytes. Bases cause certai	in colored dyes (indicators) to	change color. (Litmus pape	er turns
). Bases cause the	e indicator phenolphthalein to	turn	
Bases react with acids to form	water and a salt. Bases do not	commonly	_ with metals.
Naming Acids			
Acids are compounds that give	off	ions (H ⁺) when disso	lved in water.
Acids will always contain one of	or more hydrogen ions next to	an	The
anion determines the name of the	he acid.		
Naming Binary Acids			
Binary acids contain hydrogen	and an anion whose name end	s in –ide. When naming th	e acid, put the
prefix	and change -ide to -ic acid	1.	
Example: HCl The acid con the nonmetallic ion and change	tains the hydrogen ion and ch -ide to -ic acid.	loride ion. Begin with the	prefix hydro-, name
Example: H_2S The acid conname the nonmetallic ion. The ic.	tains the hydrogen ion and sul next step is change -ide to -ic	lfide ion. Begin with the pr acid, but for sulfur the "ur"	refix hydro- and " is added before -

1) Name the following binary acids.

a) HF _____

b) H₃P _____

Writing the Formulas for Binary Acids

The prefix hydro- lets you know the acid is binary. Determine whether you need to criss-cross the oxidation numbers of hydrogen and the nonmetal.

Example: Hydrobromic acid The acid contains the hydrogen ion and the bromide ion. The two oxidation numbers add together to get zero. The prefix hydro- lets you know the acid is binary.

Example: Hydrotelluric acid The acid contains the hydrogen ion and the telluride ion. The two oxidation numbers do NOT add together to get zero, so you must criss-cross.

2) Write the formulas for the following binary acids.

a) Hydrocyanic acid _____ b) Hydroselenic acid _____

Naming Ternary Acids

The acid is a ternary acid if the anion has oxygen in it. The anion ends in -ate or -ite. Change the suffix - ate to -_____ acid Change the suffix -ite to -ous acid The hydro- prefix is NOT used!

Example: HNO₃ The acid contains the hydrogen ion and nitrate ion. Name the polyatomic ion and change -ate to -ic acid.

Example: HNO₂ The acid contains the hydrogen ion and nitrite ion. Name the polyatomic ion and change -ite to -ous acid.

Example: H_3PO_4 The acid contains the hydrogen ion and phosphate ion. Name the polyatomic ion and change -ate to -ic acid.

3) Name the following ternary acids.

a)	H_2CO_3	

- b) H₂SO₄
- c) H₂CrO₄ _____
- d) HClO₂

Writing the Formulas for Ternary Acids

The lack of the prefix hydro- from the name implies the acid is ternary, made of the hydrogen ion and a polyatomic ion. Determine whether you need to criss-cross the oxidation numbers of hydrogen and the polyatomic ion.

Example: Acetic acid The polyatomic ion must end in –ate since the acid ends in -ic. The acid is made of H^+ and the acetate ion. The two charges when added equal zero.

Example: Sulfurous acid Again the lack of the prefix hydro- implies the acid is ternary, made of the hydrogen ion and a polyatomic ion. The polyatomic ion must end in –ite since the acid ends in -ous. The acid is made of H⁺ and the sulfite ion. The two charges when added do not equal zero, so you must crisscross the oxidation numbers.

4) Write the formulas for the following ternary acids.

a) perchloric acid	 b) iodic acid	

c) nitrous acid _____ d) bromic acid _____

Types of Acids and Bases

Acids and Bases – page 3

to water. HCl (g) + H ₂ O (l) \leftrightarrow H ₃ O ⁺ + Cl ⁻ A Bro	nsted-Lowry base is a proton
$B + H_2O \iff BH^+ + OH^-$ A Bronsted-Lowry base doe	es not need to contain OH ⁻ .
Consider $HCl(aq) + H_2O(l) \rightarrow H_3O^+(aq) + Cl^-(aq)$ a(n) H ₂ O accepts a proton from HCl.	HCl donates a proton to water. Therefore, HCl is Therefore, H_2O is $a(n)$
5) Identify the acid and base in the following reactions.	
a) $H_2SO_3 + H_2O \leftrightarrow HSO_3^- + H_3O^+$	
Acid	base
b) $NH_3 + H_2SO_4 \leftrightarrow NH_4^+ + HSO_4^-$	
Acid	base

Molarity and Dilution

The concentration of a solution is the amount of solute present in a given quantity of solution.

_____ is the number of moles of solute in 1 liter of solution.

Molarity $=\frac{\text{moles of solute}}{\text{Liters of solution}}$

The procedure for preparing a less concentrated solution from a more concentrated one is called a

$$M_1 \; V_1 \; = \; M_2 \; V_2$$

- 6) What is the molarity of an acetic acid (HC₂H₃O₂) solution with 4.0 moles dissolved in 250 mL of solution?
- 7) How many moles of hydrochloric acid (HCl) are needed to make 3.0 L of a 0.55 M HCl solution?
- 8) 0.600 moles of the base sodium hydroxide (NaOH) are dissolved in a small amount of water then diluted to 500. mL. What is the concentration?
- 9) 3.25 moles of the base potassium hydroxide (KOH) are dissolved in a small amount of water then diluted to 725 mL. What is the concentration?
- 10) How many moles are in 2.00 L of a 6.00 M solution of sulfuric acid (H₂SO₄)?
- 11) How many moles are in 1250 mL of a 3.60 M solution of nitric acid (HNO₃)?

- 12) 6.0 L of a 1.55 M LiOH solution are diluted to 8.8 L. What is the new molarity of the lithium hydroxide solution?
- 13) You have 250 mL of 6.0 M HCl. How many milliliters of 1.2 M HCl can you make?
- 14) 4.0 liters of a 0.75 M solution of sulfuric acid (H_2SO_4) are diluted to a 0.30 M solution. What is the final volume?
- 15) You need 350 mL of 0.25 M NaOH. All you have available is a 2.0 M stock solution of NaOH. How do you make the required solution?

Strength of Acids and Bases

The strength of a base is based on the degree of		The strength
of a base does NOT depend on the	1A and	_ hydroxides,
excluding, are strong bases. Some bases, such as Mg(C	OH) ₂ , are not very sol	uble in water, and
they don't produce a large number of OH ⁻ ions. However, they are still considered to be strong base		strong bases
because all the base that does dissolve completely dissociates. The strength of an acid is based on the		
degree of dissociation. The strength of an acid does NOT depend or	the	
K _a is referred to as the acid dissociation	The greater the K _a	value, the
the acid. There are 6 strong acids: HCl	, HBr, HI, HClO4, H	NO ₃ , and H ₂ SO ₄ .
Strong acids and bases are strong	because the	y dissociate
completely. Electrolytes conduct Weak acids and base		bases don't
completely ionize, so they are weak electrolytes. Although the terms weak and strong are used to con		e used to compare
the of acids and bases, <i>dilute</i> an	d <i>concentrated</i> are te	erms used to
describe the of solutions.		

pH Scale

Water ionizes; it falls apart into ______. $H_2O \rightarrow H^+ + OH^-$ The preceding reaction is called the _______ of water. $[H^+] = [OH^-] = 1 \times 10^{-7} M$ When $[H^+] = [OH^-]$, the solution is ______. At 25°C, $K_w = [H^+] [OH^-] = 1 \times 10^{-14} K_w$ is called the ion-product constant. If $[H^+] > [OH^-]$, the solution is ______. The solution is _______ when $[OH^-] > [H^+]$. In most applications, the observed range of possible hydronium or hydroxide ion concentrations spans $10^{-14} M$ to ______M. To make this range of possible concentrations easier to work with, the pH scale was developed. pH is a mathematical scale in which the concentration of hydronium ions (H_3O^+) in a solution is expressed as a number from ______ to Acids and Bases – page 5 ______. pH meters are instruments that measure the exact pH of a solution. Indicators register different colors at different pH's. In neutral solution, pH = 7. In an acidic solution, pH < 7. In a basic solution, pH > 7. As the pH drops from 7, the solution becomes more acidic. As pH increases from 7, the solution becomes more basic.

The **pH** of a solution equals the negative logarithm of the **hydrogen** or **hydronium** ion concentration.

 $\mathbf{pH} = -\log \left[\mathbf{H}^{+}\right]$

pH "goes with" the terms hydrogen and .

The **pOH** of a solution equals the negative logarithm of the **hydroxide** ion concentration.

 $pOH = - \log [OH^{-}]$

pOH "goes with" the term _____.

On the graphing calculator, hit

(-)
log
the number

On a scientific calculator hit

the number
log
+/-

If either pH or pOH is known, the other may be determined by using the following relationship.

pH + pOH = 14.00

16) Find the pH of the following solutions.

a)	The hydronium ion concentration equals: $10^{-2} M = 1 \ge 10^{-2} M$. pH =
b)	The hydrogen ion concentration equals: $10^{-11} M$. pH =
c)	The hydronium ion concentration equals: $1 \times 10^{-6} M$. pH =

d) The hydroxide ion concentration equals: $10^{-8} M$. pH = _____

- e) The hydroxide ion concentration equals: $10^{-5} M$. pH = _____
- f) The hydroxide ion concentration equals: $10^{-3} M$. pH = _____
- 17) If a certain carbonated soft drink has a hydrogen ion concentration of $1.0 \ge 10^{-4} M$, what are the pH and pOH of the soft drink?

More pH and pOH

18) Find the pH if the hydrogen ion concentration equals: $3.25 \times 10^{-3} \text{ M}$.

Acids and Bases - page 6

- 19) Find the pH if the hydroxide ion concentration equals: 7.36×10^{-5} M.
- 20) Find the pOH if the hydroxide ion concentration equals: 8.34×10^{-9} M.
- 21) Find the pOH if the hydronium ion concentration equals: $1.45 \times 10^{-4} M$.

Calculating Ion Concentrations From pH

If either pH or pOH is known, the hydrogen ion or hydroxide ion can be found.

$$[H^+] = 10^{-pH}$$
 [OH⁻] $= 10^{-pOH}$

On the graphing calculator, hit

On a scientific calculator hit

2 nd	*	the number
log	*	+/-
(-)	*	shift
and then the number.	*	log

Always check to see if the terms match! If they do not, subtract the pH/pOH from 14 FIRST!

22) Find the $[H^+]$ of a solution that has a pH equal to 6.

23) Find the $[H^+]$ of a solution that has a pH equal to 12.

24) Find the $[H^+]$ of a solution that has a pH equal to 5.

25) Find the $[H^+]$ of a solution that has a pOH equal to 6.

26) Find the $[OH^-]$ of a solution that has a pOH equal to 6.

27) Find the $[H^+]$ of a solution that has a pOH equal to 2.

28) Find the $[H^+]$ of a solution that has a pOH equal to 4.

29) Find the $[OH^-]$ of a solution that has a pH equal to 10.

More Calculating Ion Concentrations From pH

30) Find the $[H^+]$ of a solution that has a pH equal to 4.23.

31) Find the $[H^+]$ of a solution that has a pOH equal to 6.34.

32) Find the $[OH^{-}]$ of a solution that has a pH equal to 10.5.

33) Find the $[OH^-]$ of a solution that has a pOH equal to 13.5.

Calculating Ion Concentration From Ion Concentration

If either [H⁺] or [OH⁻] is known, the hydrogen ion or hydroxide ion can be found.

 $[H^+][OH^-] = 1 \ge 10^{-14}$

Acids and Bases – page 7

34) Find the hydrogen ion concentration if the hydroxide ion concentration equals: $1 \times 10^{-8} M$. 35) Find the hydrogen ion concentration if the hydroxide ion concentration equals: $1 \times 10^{-2} M$. 36) Find the hydroxide ion concentration if the hydrogen ion concentration equals: $1 \times 10^{-4} M$. 37) Find the hydroxide ion concentration if the hydrogen ion concentration equals: $1 \times 10^{-9} M$. 38) Find the hydrogen ion concentration if the hydroxide ion concentration equals: $3.25 \times 10^{-3} M$. 39) Find the hydroxide ion concentration if the hydrogen ion concentration equals: $6.44 \times 10^{-6} M$. *Indicators*

Chemical ______ whose colors are affected by acidic and basic solutions are called indicators. Many indicators do not have a sharp color change as a function of ______. Most indicators tend to be ______ in more acidic solutions.

- 40) Which indicator is best to show an equivalence point pH of 4?
- 41) Which indicator is best to show an equivalence point pH of 11?
- 42) Which indicator is best to show an equivalence point pH of 2?

Neutralization Reactions

The reaction of an acid and a base is called a neutralization reaction. Acid + base \rightarrow salt + water A salt is an _____ compound.

43) Predict the products of and balance the following neutralization reactions. (Remember to check the oxidation numbers of the ions in the salt produced.)

a) HNO₃ + KOH \rightarrow

The salt is composed of the ______ ion of the base and the ______ ion of the acid.

b) HCl + Mg(OH)₂ \rightarrow

c) H₂SO₄ + NaOH \rightarrow

Neutralization

- 44) How many moles of HNO₃ are needed to neutralize 0.86 moles of KOH? KOH + HNO₃ \rightarrow KNO₃ + H₂O
- 45) How many moles of HCl are needed to neutralize 3.5 moles of Mg(OH)₂? 2HCl + Mg(OH)₂ \rightarrow MgCl₂ + 2H₂O
- 46) How many moles of H_3PO_4 are needed to neutralize 3.5 moles of $Mg(OH)_2$? $2H_3PO_4 + 3Mg(OH)_2 \rightarrow Mg_3(PO_4)_2 + 6H_2O$
- 47) How many moles of HC₂H₃O₂ are needed to neutralize 3.5 moles of Cr(OH)₃? $3HC_2H_3O_2 + Cr(OH)_3 \rightarrow Cr(C_2H_3O_2)_3 + 6H_2O$
- 48) If it takes 87 mL of an HCl solution to neutralize 0.67 moles of $Mg(OH)_2$ what is the concentration of the HCl solution? $2HCl + Mg(OH)_2 \rightarrow MgCl_2 + 2H_2O$
- 49) If it takes 58 mL of an H₂SO₄ solution to neutralize 0.34 moles of NaOH what is the concentration of the H₂SO₄ solution? H₂SO₄ + 2NaOH \rightarrow Na₂SO₄ + 2H₂O
- 50) If it takes 85 mL of an HNO₃ solution to neutralize 0.54 moles of Mg(OH)₂ what is the concentration of the HNO₃ solution? $2\text{HNO}_3 + \text{Mg(OH)}_2 \rightarrow \text{Mg(NO}_3)_2 + 2\text{H}_2\text{O}$
- 51) If it takes 150. mL of an Ca(OH)₂ solution to neutralize 0.800 moles of HCl what is the concentration of the Ca(OH)₂ solution? Ca(OH)₂ + 2HCl \rightarrow MgCl₂ + 2H₂O

Titration

The general process of determining the molarity of an acid or a base through the use of an acid-base reaction is called an acid-base ______. The known reactant molarity is used to find the unknown _______ of the other solution. Solutions of known molarity that are used

in this fashion are called ________ solutions. In a titration, the molarity of one of the reactants, acid or base, is known, but the other is unknown.

- 52) A 15.0-mL sample of a solution of H₂SO₄ with an unknown molarity is titrated with 32.4 mL of 0.145*M* NaOH to the bromothymol blue endpoint. Based upon this titration, what is the molarity of the sulfuric acid solution? H₂SO₄ + 2NaOH → Na₂SO₄ + 2H₂O
- 53) If it takes 45 mL of a 1.0 M NaOH solution to neutralize 57 mL of HCl, what is the concentration of the HCl ? NaOH + HCl \rightarrow NaCl + H₂O
- 54) If it takes 67.0 mL of 0.500 M H₂SO₄ to neutralize 15.0 mL of Al(OH)₃ what was the concentration of the Al(OH)₃? $3H_2SO_4 + 2Al(OH)_3 \rightarrow Al_2(SO_4)_3 + 6H_2O$
- 55) How many moles of 0.275 M HCl will be needed to neutralize 25.0 mL of 0.154 M NaOH? HCl + NaOH \rightarrow NaCl + H₂O

Titration Curves

A plot of ______ versus volume of acid (or base) added is called a titration curve.

Strong Base-Strong Acid Titration Curve

Consider adding a strong base (e.g. NaOH) to		
a solution of a strong acid (e.g. HCl). Before		
any base is added, the pH is given by the		
strong solution.		
Therefore, pH7. When base is added,		
before the equivalence point, the pH is given		
by the amount of strong acid in		
Therefore,		
pH < 7. At the		
point, the amount of base added is		
stoichiometrically equivalent to the amount of		

acid originally present.

Thus one needs only to account for excess _____. Therefore, pH _____ 7.