Electrolytes

- All ionic compounds are strong electrolytes, because they mostly break up into ions as they dissolve in water.
- Electrolytes for molecular compounds depends on whether they dissolve without ion formation, a little ion formation, or mostly ion formation, respectively.

Molecular Compound	Electrolyte Type	Species in Solution
Sucrose C ₁₂ H ₂₂ O ₁₁	non-electrolyte	Molecules only
Acetic Acid CH ₃ COOH	Weak electrolyte	Molecules and some ions
Hydrogen Chloride HCl	Strong electrolyte	lons only

Electrolytes

• Strong electrolytes dissociate completely into ions. This includes the strong acids (HCl, HBr, HI, HNO₃, HClO₄, and H_2SO_4).

• The strong bases (LiOH, NaOH, KOH, RbOH, CsOH, Ca(OH)₂, Sr(OH)₂ and Ba(OH)₂) dissociate completely

Electrolytes

 Weak electrolytes do not dissociate completely into ions. This includes most acids and bases, except those listed above.

• Non-electrolytes are species which dissolve in water, but which do not dissociate. Soluble covalent compounds are covalent compounds like glucose and ammonia.

ethanol No conductivity

KCI High conductivity

acetic acid solution Low conductivity

ion	name	ion	name
NH₄+	ammonium	CO32-	carbonate
NO2-	nitrite	HCO3-	hydrogen carbonate
NO3-	nitrate	C10-	hypochlorite
SO_{3}^{2-}	sulfite	C1O2-	chlorite
SO4 ^{2−}	sulfate	C1O3-	chlorate
HSO₄ ⁻	hydrogen sulfate*	C104-	perchlorate
OH-	hydroxide	$C_{2}H_{3}O_{2}^{-}$	acetate
CN-	cyanide	MnO ₄ -	permanganate
PO43−	phosphate	Cr ₂ O ₇ ²⁻	dichromate
HPO₄ ^{2−}	hydrogen phosphate	CrO4 ²⁻	chromate
H₂PO₄ [−]	dihydrogen phosphate	O22-	peroxide

*Bisulfate and †bicarbonate are widely used common names for hydrogen sulfate and hydrogen carbonate, respectively.