Le Chatelier's Principle Worksheet

When you decrease the volume of a reaction vessel, you <u>increase</u> the pressure. This causes a reaction at equilibrium to shift to the side with the <u>smallest</u> number of moles. If the reaction has an equal number of moles of reactants and products, changing the volume of the reaction vessel causes no <u>change</u> in the equilibrium.

Changing the temperature of a reaction at equilibrium alters both the equilibrium constant and the equilibrium position. When a reaction is exothermic , which means it releases energy, lowering the temperature shifts the equilibrium to the <u>right</u> because the forward reaction liberates heat and removes the <u>stress</u>.

- 1. What does "equilibrium" mean? forward reaction rate and backward reaction rate are the same
- 2. What does Le Chatelier's Principle say? If a stress is applied to a system at equilibrium, the system shifts in the direction that relieves the stress.

For each reaction below, state the direction (left-reactants or right-products), in which the equilibrium will shift when the indicated substance is added. Identify one other way in which the reaction could be shifted in the same direction you indicated.

- 3. Reaction: $N_{2(g)} + 3H_{2(g)} \leftrightarrow 2NH_{3(g)}$; NH₃ added
- 4. Reaction: $H_{2(g)} + I_{2(g)} \leftrightarrow 2HI_{(g)}$; H_2 added
- 5. _____
- 6. Reaction: $CO_{(g)} + H_2O \leftrightarrow CO_{2(g)} + H_{2(g)}$; H₂O added
- 7. _____

Complete the following charts by writing left, right, or none for the equilibrium shift, and decreases, increases, or remains the same for the concentrations of reactants and products.

$N_2(g) + 3H_2(g) \leftrightarrow 2NH_3(g)$ -	+ 22.0 kcal	(heat)
---	-------------	--------

Stress	Equilibrium Shift	[N ₂]	[H ₂]	[NH3]
7. Add N ₂				
8. Remove H ₂				
9. Add NH ₃				
10. Increase Temperature				
11. Increase Pressure				

12. Increase Volume			
---------------------	--	--	--

12.6 kcal (heat) + $H_{2(g)}$ + $I_{2(g)}$ \leftrightarrow 2HI(g)

Stress	Equilibrium Shift	[H ₂]	[I 2]	[HI]
13. Add I ₂				
14. Remove H ₂				
15. Add HI				
16. Increase Temperature				
17. Decrease Pressure				
18. Decrease Volume				

$CaCO_3(s) + 170 \text{ kJ (heat)} \leftrightarrow CaO(s) + CO_2(g)$

Stress	Equilibrium Shift	[CaCO ₃]	[CaO]	[CO ₂]
19. CaO is added				
20. CO_2 is added				
21. CaCO ₃ is removed				
22. Temp is decreased				
23. [CO ₂] is decreased				