\qquad Period: \qquad

Le Chatelier's Principle Worksheet

When you decrease the volume of a reaction vessel, you \qquad increase \qquad the pressure. This causes a reaction at equilibrium to shift to the side with the \qquad smallest number of moles. If the reaction has an equal number of moles of reactants and products, changing the volume of the reaction vessel causes no ___change__ in the equilibrium.

Changing the temperature of a reaction at equilibrium alters both the equilibrium constant and the equilibrium position. When a reaction is \qquad exothermic \qquad , which means it releases energy, lowering the temperature shifts the equilibrium to the ___right because the forward reaction liberates heat and removes the _stress

1. What does "equilibrium" mean? forward reaction rate and backward reaction rate are the same
2. What does Le Chatelier's Principle say? __If a stress is applied to a system at equilibrium, the system shifts in the direction that relieves the stress.

For each reaction below, state the direction (left-reactants or right-products), in which the equilibrium will shift when the indicated substance is added. Identify one other way in which the reaction could be shifted in the same direction you indicated.
3. Reaction: $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})} ; \mathrm{NH}_{3}$ added
4. Reaction: $\mathrm{H}_{2(g)}+\mathrm{I}_{2(g)} \leftrightarrow 2 \mathrm{HI}_{(g)} ; \mathrm{H}_{2}$ added
5. \qquad
6. Reaction: $\mathrm{CO}_{(g)}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{CO}_{2(g)}+\mathrm{H}_{2(g)} ; \mathrm{H}_{2} \mathrm{O}$ added
7. \qquad

Complete the following charts by writing left, right, or none for the equilibrium shift, and decreases, increases, or remains the same for the concentrations of reactants and products.

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \leftrightarrow 2 \mathrm{NH}_{3}(g)+22.0 \mathrm{kcal} \text { (heat) }
$$

Stress	Equilibrium Shift	$\left[\mathbf{N}_{2}\right]$	$\left[\mathbf{H}_{2}\right]$	[NH3]
7. Add N_{2}				
8. Remove H_{2}				
9. Add NH_{3}				
10. Increase Temperature				
11. Increase Pressure				

12. Increase Volume

12.6 kcal (heat) $+\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \leftrightarrow 2 \mathrm{HI}(g)$

Stress	Equilibrium Shift	$\left[\mathbf{H}_{2}\right]$	$\left[\mathbf{I}_{2}\right]$	[HI]
13. Add I_{2}				
14. Remove H_{2}				
15. Add HI				
16. Increase Temperature				
17. Decrease Pressure				
18. Decrease Volume				

$$
\mathrm{CaCO}_{3}(s)+170 \mathrm{~kJ}(\text { heat }) \leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)
$$

Stress	Equilibrium Shift	$\left[\mathbf{C a C O}_{3}\right]$	$[\mathbf{C a O}]$	$\left[\mathrm{CO}_{2}\right]$
$19 . \mathrm{CaO}$ is added				
$20 . \mathrm{CO}_{2}$ is added				
$21 . \mathrm{CaCO}_{3}$ is removed				
22. Temp is decreased				
$23 .\left[\mathrm{CO}_{2}\right]$ is decreased				

