Equilibrium

Ms. Peace

Lesson 1

Dynamic Equilibrium

We Are Here

Equilibrium

- In a 'traditional' reaction, all the reactants get turned into products (assuming no excess)
- A state of equilibrium is reached when the rates of the forward and reverse reactions are equal

'TRADITIONAL'

REACTANTS

PRODUCTS

Writing Equilibrium Equations

- Equilibrium reactions are written using a double arrow
- Each of the arrows only has a single-sided head

PRODUCTS

- The unit will make a lot of reference to the rate of the:
- 'forward reaction' (reactants becoming products)
- 'back reaction' (products becoming reactants)

Equilibrium and Solubility

- A saturated solution in a closed system will establish a dynamic equilibrium if there is excess solid present
- The concentration of ions present in the aqueous solution will increase
- Some aqueous ions will recombine and precipitate out of solution
- When the solution becomes saturated, the rate of dissolving will equal the rate of precipitation

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(s)}=\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(a a)}
$$

Dynamic Equilibrium

- The reaction hasn't stopped, it is still going, but the rate of the forward and back reactions are equal, so there is no overall change.

Dynamic Equilibrium

- The concentration of reactants and products is constant
- They are NOT equal to each other
- They are just not changing

- The rate of the forward reaction is equal to the rate of the back reaction
- At equilibrium these are not zero...even though it looks like it on the graph

Characteristics of Equilibrium

1. Properties are constant at equilibrium (no color change or change in density)
2. The rate of the forward reaction is equal to the rate of the reverse reaction
3. There is no change in concentration of reactants and products
4. Equilibrium can only be obtained in a closed system
5. All species in the chemical equation are present in the equilibrium reaction mixture
6. Equilibrium can be obtained from either direction
7. Changes such as temperature, pressure, or concentration of reactants or products can affect the equilibrium

Videos

Dynamic Equilibrium

Bailing Beakers

The Equilibrium Law

- The equilibrium constant describes where the position of equilibrium lies at a given temperature
- Can be used to maximize the yield of products and the profitability of industry
- The Law of Chemical Equilibrium states that at a given temperature the ratio of the concentration of products to the concentration of reactants is constant

Equilibrium Constant

$$
K_{c}=\frac{[\text { Products }]}{[\text { Reactants }]}
$$

$$
\begin{aligned}
& w \mathrm{~A}+x \mathrm{~B} \rightleftharpoons y \mathrm{C}+\mathrm{zD} \\
& K_{c}=\frac{[C]^{y}[D]^{z}}{[A]^{w}[B]^{x}}
\end{aligned}
$$

Changes in Reaction Equation

Change in Reaction Equation	Equilibrium Constant Expression	Equilibrium Constant
Reverse the reaction	Inverse of the expression	$\frac{1}{\mathrm{~K}_{c}}$
Halve the coefficients	Square root of the expression	$\sqrt{ } \mathrm{K}_{\mathrm{c}}$
Double the coefficients	Square the expression Product of the expressions	$\mathrm{K}_{\mathrm{c}}=\mathrm{K}_{\mathrm{c} 1} \times \mathrm{K}_{\mathrm{c} 2}$
Sum equations		

Magnitude of the Equilibrium Constant

- If K_{c} is large, $\mathrm{K}_{\mathrm{c}}>1$, at any given temperature, products are favored over reactants
- If K_{c} is small, $\mathrm{K}_{c} \ll 1$, at any given temperature, the reaction is unfavorable

Writing Equilibrium Constant Expressions

- For an aqueous reaction the concentration of the solvent water does not appear in the equilibrium constant expression
- For a non-aqueous solution, water must be included in the equilibrium constant expression

Reaction Quotient

- If a system has not reached equilibrium, the ratio of concentration of product to reactants will not equal K_{c}
- The ratio is the reaction quotient, Q, and it helps you to determine the progress of the reaction as it moves toward equilibrium $\quad a A+\underline{b} B \rightleftharpoons \underline{c} C+\underline{d} D$ and the direction of the reaction that is favored

$$
Q_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}
$$

K_{c} and Q

$Q>K_{c}$	The concentration of products is greater than at equilibrium and the reverse reaction is favored until equilibrium is reached
$Q<K_{c}$	The concentration of reactants is greater than at equilibrium and the forward reaction is favored until equilibrium is reached
$Q=K_{c}$	The system is at equilibrium and the forward and reverse reactions occur at equal rates

Lesson 2

Le Chatelier's Principle

We Are Here

Le Châtelier's Principle

- Useful tool for predicting the effect that changing conditions will have on the equilibrium position
- "If a change is made to a system that is in equilibrium, the balance between forward and reverse reactions will shift to offset this change and return the system to equilibrium."
- Applies to:
- Concentration
- Pressure
- Temperature

Changes in Concentration

- Decrease in [Reactant] or increase in [Product]
- Equilibrium shifts to the left
- This has the effect of increasing [Reactant] and decreasing [Product]
- Increase in [Reactant] or decrease in [Product]
- Equilibrium shifts to the right
- This has the effect of decreasing [Reactant] and increasing [Product]
- Equilibrium constant is not affected

Changes in Pressure

- Increasing Pressure:
- Shifts equilibrium to the side with fewest gas molecules
- This has the effect of reducing the pressure increase
- Decreasing Pressure:
- Shifts equilibrium to the side with more gas molecules
- This has the effect of increasing the pressure
- Increase in pressure, decrease in volume and vice versa
- Equilibrium constant is not affected

Changes in Temperature

Type of Reaction	Change in Temperature	Equilibrium Position	Equilibrium $_{\text {Constant, K }_{\mathbf{c}}}$
Exothermic	Increase	Moves to the left, favoring reactants	Decreases
Endothermic	Decrease	Moves to the right, favoring products	Increases
	Increase	Moves to the right, favoring products	Increases
	Decrease	Moves to the left, favoring reactants	Decreases

Catalysts

- Catalysts provide alternative pathways for a reaction
- In a forward reaction, a catalyst provides sufficient energy to overcome the activation energy barrier and become products
- In a reversible reaction, the lower activation energy has the same effect on both the forward and reverse reactions
- The position of the equilibrium will not change
- Equilibrium constant is not affected

How is equilibrium around us?

$$
\mathrm{CO}_{2}(\mathrm{aq}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})
$$

When you open the can, you no longer have a closed system. The CO_{2} molecules are free to escape into the atmosphere.

This decreases the number of molecules returning to the solution.The system is no longer at equilibrium.

You are decreasing the concentration of the product. According to Le Châtelier's Principle, the system responds by trying to replace the molecules that have escaped. These molecules then escape into the atmosphere.

The process continues until the pop goes flat.

Haber Process

- An artificial nitrogen fixation process and is the main industrial procedure for the production of ammonia today
- Before the development of the Haber process, ammonia had been difficult to produce on an industrial scale
- Although the Haber process is mainly used to produce fertilizer today, during WWI, it provided Germany with a source of ammonia for the production of explosives

Haber Process

Haber Process

- The Haber process has been described as the most important chemical reaction on Earth as it has revolutionized global food production. However, it also had a large impact on weaponry in both world wars.
- How does the social context of scientific work affect the methods and findings of science? Should scientists be held morally responsible for the applications of their discoveries?

Calculation of equilibrium constants

We Are Here

Homologous Equilibrium Constants

When a mixture of 0.100 mol of $\mathrm{NO}, 0.051 \mathrm{~mol}$ of H_{2} and 0.100 mol of $\mathrm{H}_{2} \mathrm{O}$ were placed in a $1.0 \mathrm{dm}^{3}$ flask at 300 K , the following equilibrium was established:

$$
2 \mathrm{NO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{N}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

At equilibrium, the concentration of NO was found to be 0.062 $\mathrm{mol} \mathrm{dm}{ }^{-3}$. Determine the equilibrium constant, K_{c}, of the reaction at this temperature

ICE

$$
2 \mathrm{NO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{N}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

$\left.\begin{array}{|l|c|c|c|c|}\hline & 2 \mathrm{NO} & 2 \mathrm{H}_{2} & \mathrm{~N}_{2} & 2 \mathrm{H}_{2} \mathrm{O} \\ \hline \text { Initial (mol dm }\end{array} \mathrm{m}^{-3}\right)$

$0.100-x=0.062$
$-x=0.062-0.100$
$-x=-0.038$
$x=0.038$

ICE

$2 \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

	2 NO	$2 \mathrm{H}_{2}$	$\mathrm{~N}_{2}$	$2 \mathrm{H}_{2} \mathrm{O}$
Initial (mol dm)	0.100	0.051	0.00
Change (mol dm^{-3})	-0.038	-0.038	+0.019	+0.038
Equilibrium (mol dm^{-3})	0.062	0.013	0.019	0.138

Homologous Equilibrium Constants

$$
\begin{array}{ll}
& 2 \mathrm{NO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{N}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{~K}_{\mathrm{c}}=\frac{\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]^{2}} & =[\mathrm{O} .019][0.138]^{2} \\
{[0.062]^{2}[0.013]^{2}} \\
\mathrm{~K}_{\mathrm{c}}=5.6 \times 1 \mathrm{O}^{2} & \\
\text { IB does not require units for } \mathrm{K}_{\mathrm{c}}
\end{array}
$$

Calculating Equilibrium Concentrations

The K_{c} for the following reaction is 6.78 at a certain temperature. The initial concentrations of NO and SO_{3} were both $0.0300 \mathrm{~mol} \mathrm{dm}^{-3}$. Calculate the equilibrium concentration of each reactant and product.

$$
\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g}) \rightleftarrows \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{SO}_{2}(\mathrm{~g})
$$

Calculating Equilibrium Concentrations

$\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g}) \rightleftarrows \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{SO}_{2}(\mathrm{~g})$

	SO_{3}	NO	NO_{2}	SO_{2}
Initial ($\mathrm{mol} \mathrm{dm}^{-3}$)	0.0300	0.0300	0.00	0.00
Change (mol dm^{-3})	-x	-x	+x	+x
Equilibrium (mol dm^{-3})	0.0300-x	0.0300-x	x	x

Calculating Equilibrium Concentrations

$$
\begin{gathered}
\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g}) \geq \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{SO}_{2}(\mathrm{~g}) \\
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NO}_{2}\right]\left[\mathrm{SO}_{2}\right]}{\left[\mathrm{SO}_{3}\right][\mathrm{NO}]}=6.78=\frac{(\mathrm{x})(\mathrm{x})}{(0.0300-\mathrm{x})(0.0300-\mathrm{x})} \\
6.78=\frac{(\mathrm{x})^{2}}{(0.0300-\mathrm{x})^{2}}
\end{gathered}
$$

Calculating Equilibrium Concentrations

Take the square root of both sides:
$2.60=\frac{x}{0.0300-x}$
Solve for x :
0.078-2.60x = x
$0.078=3.60 x$
$\mathrm{x}=0.0217$

Calculating Equilibrium Concentrations

$\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g}) \rightleftarrows \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{SO}_{2}(\mathrm{~g})$

	SO_{3}	NO	NO_{2}	SO_{2}
Initial ($\mathrm{mol} \mathrm{dm}^{-3}$)	0.0300	0.0300	0.00	0.00
Change (mol dm^{-3})	-.0.0217	-0.0217	+0.0217	+0.0217
Equilibrium (mol dm^{-3})	0.00830	0.00830	0.0217	0.0217

I.C.E.

ICE Video

ICE Tables

Gibbs Free Energy

Gibbs Free Energy

- Gibbs free energy describes the spontaneity and temperature dependence of a reaction
- The free energy will change as reactants are converted into products
- The reaction will be spontaneous in the direction that results in a decrease in free energy (or in the direction in which the free energy value becomes more negative)

Gibbs Free Energy

Equilibrium Constant	Description	Gibbs Free Energy Change
$\mathrm{K}=1$	At equilibrium; neither reactants or products favored	$\Delta \mathrm{G}=0$
$\mathrm{~K}>1$	Products favored	$\Delta \mathrm{G}<\mathrm{O}$ (negative value)
$\mathrm{K}<1$	Reactants favored	$\Delta \mathrm{G}>0$ (positive value)

- A negative $\Delta \mathrm{G}$ indicates the reaction is spontaneous and the equilibrium concentrations of the products are larger than the equilibrium concentrations of the reactants.

Gibbs Free Energy

$$
\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S}
$$

$\Delta G_{\text {products }}-\Delta G_{\text {reactants }}=\Delta G$

$$
\Delta \mathrm{G}=-\mathrm{RT} \ln \mathrm{~K}
$$

Example

Consider $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftarrows 2 \mathrm{HI}$. Given that the value of $\Delta \mathrm{G}$ at 298 K for this reaction is $+1.3 \mathrm{kJmol}^{-1}$, calculate the value of the equilibrium constant.

$$
\Delta \mathrm{G}=-\mathrm{RT} \ln \mathrm{~K}
$$

*R has units of JK^{-1} the value of $\Delta \mathrm{G}$ must be

$$
\Delta \mathrm{G}=1300 \mathrm{Jmol}^{-1}
$$ converted into J Jmol ${ }^{-1}$

$$
1300=-8.31 \times 298 \times \ln K
$$

$$
\operatorname{lnK}=-1300=-0.525
$$

$$
8.31 \times 298
$$

Inverse function for $\ln \mathrm{x}$ is e^{x}
$\mathrm{K}=\mathrm{e}^{-0.525} \quad$ The equilibrium constant is less than 1 , which implies that the position of equilibrium
$\mathrm{K}=0.59$ lies closer to reactants than products, which is also consistent with value of $\Delta \mathrm{G}$ being positive

