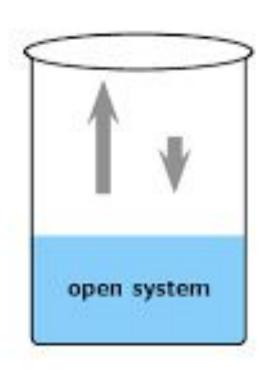
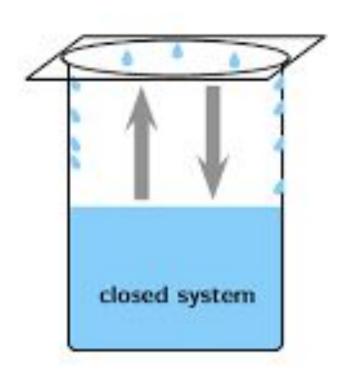

Equilibrium

A state of equilibrium is reached when the rates of the forward and reverse reactions are equal

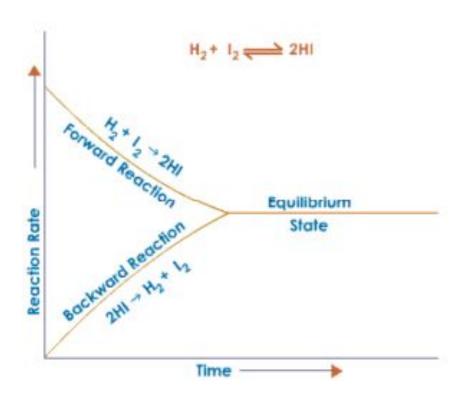
- Equilibrium reactions are written using a double arrow
 - Each of the arrows only has a single-sided head




- The unit will make a lot of reference to the rate of the:
 - 'forward reaction' (reactants becoming products)
 - 'back reaction' (products becoming reactants)

Characteristics of Equilibrium

- Properties are constant at equilibrium (no color change or change in density)
- The rate of the forward reaction is equal to the rate of the reverse reaction
- 3. There is no change in concentration of reactants and products
- 4. Equilibrium can only be obtained in a closed system
- All species in the chemical equation are present in the equilibrium reaction mixture
- Equilibrium can be obtained from either direction
- Changes such as temperature, pressure, or concentration of reactants or products can affect the equilibrium



LE CHATELIER'S PRINCIPLE

STRESS	SHIFT	WHY?
increase concentration of a substance	away from substance	extra concentration needs to be used up
decrease concentration of a substance	towards substance	need to produce more of substance to make up for what was removed
increase pressure of system	towards fewer moles of gas	for gas: pressure increase = volume decrease
decrease pressure of system	towards more moles of gas	for gas: pressure decrease = volume increase
increase temperature of system	away from heat/ energy exothermic reaction is favored	extra heat/ energy must be used up
decrease temperature of system	towards heat/ energy exothermic reaction is favored	more heat/ energy needs to be produced to make up for the loss
add a catalyst	NO SHIFT	The rates of both the forward and reverse reactions are increased by the same amount.

Dynamic Equilibrium Summary

Dynamic Equilibrium Video

