Boyle's Law

$$P_1V_1 = P_2V_2$$

P = Pressure of the gasV = Volume of the gas

Temperature must be constant

Conversions: 1atm = 760 mmHg = 760 torr = 101.3kPa **STP:** 273K **Proportionality:** $P \propto \frac{1}{v}$ inverse; as one goes up, the other goes down.

Charles' Law

T = Temperature of the gas V = Volume of the gas

Pressure must be constant

Conversions: °C + 273 = K **STP:** 1atm **Proportionality:** $V \propto T$

direct; as one goes up, the other goes up.

Gay-Lussac's Law

 $P_1 P_2$ are pressure of gas $T_1 T_2$ are Temperature of gas

Volume must be constant

Conversions: °C + 273 = K 1atm = 760 mmHg = 760 torr = 101.3kPa **STP: Proportionality:** $P \propto T$

direct; as one goes up, the other goes up.

Combined Gas Law

 $\frac{nT}{P}$ $V \propto$

Factor in "R" a proportionality constant

 $V = \frac{RnT}{T}$

Avogadro's Law

 $V_1 V_2$ are Volumes of gas $n_1 n_2$ are amount of gas

Pressure and temperature must be constant

Conversions: 22.4L = 1 mol
mass/molar mass = mol
STP: 1 atm, 273K
Proportionality: V ∝ n

direct; as one goes up, the other goes up.

Ideal Gas Law

Conversions: 1atm = 760 mmHg = 760 torr = 101.3kPa °C + 273 = K 22.4L = 1 mol mass/molar mass = mol

Constants: R = 0.08206 L atm K⁻¹ mol⁻¹ R = 62.4 L mmHg K⁻¹ mol⁻¹ R = 8.314 L kPa K⁻¹ mol⁻¹

Dalton's Partial Pressure $P_{T} = P_{1} + P_{2} + P_{3} \dots$ $P_T = P_{gas} + P_{water}$

$$P_{A} = \frac{n_{A}}{n_{A} + n_{B} + n_{C}} \times P$$

$$P_{B} = \frac{n_{B}}{n_{A} + n_{B} + n_{C}} \times P$$

$$P_{C} = \frac{n_{C}}{n_{A} + n_{B} + n_{C}} \times P$$

Variables and Constants

Pressure, P

Units: atm, mmHg, torr, kPa **Comments:** For the ideal gas law, pick the R value with the correct unit.

Volume, V Units: mL, , cm³, L, dm³ **Comments:** mL/1000 = L **Temperature, T Units:** °C, K **Comments:** °C + 273 = K

