Conversions: 1 atm $=760 \mathrm{mmHg}=760$ torr $=$

Boyle's Law

$P_{1} V_{1}=P_{2} V_{2}$

$\mathrm{P}=$ Pressure of the gas
$V=$ Volume of the gas

Temperature must be constant
101.3 kPa

STP: 273K
Proportionality:

$$
P \propto \frac{1}{V}
$$

inverse; as one goes up, the other goes down.

Charles' Law

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

$\mathrm{T}=$ Temperature of the gas
$\mathrm{V}=$ Volume of the gas
Pressure must be constant

Conversions: ${ }^{\circ} \mathrm{C}+273=\mathrm{K}$
STP: 1atm
Proportionality:

$$
V \propto T
$$

direct; as one goes up, the other goes up.

Gay-Lussac's Law

$\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$

Conversions: ${ }^{\circ} \mathrm{C}+273=\mathrm{K}$
$1 \mathrm{~atm}=760 \mathrm{mmHg}=760$ torr $=101.3 \mathrm{kPa}$ STP:
Proportionality: $\quad P \propto T$
direct; as one goes up, the other goes up.

Combined Gas Law

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

$$
V \propto \frac{n T}{P}
$$

Factor in " R a proportionality constant

$$
V=\frac{R n T}{P}
$$

Avogadro's Law

$$
\frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}}
$$

$\mathrm{V}_{1} \mathrm{~V}_{2}$ are Volumes of gas

$\mathrm{n}_{1} \mathrm{n}_{2}$ are amount of gas

Pressure and temperature must be constant

Conversions: $22.4 \mathrm{~L}=1 \mathrm{~mol}$
mass $/$ molar mass $=\mathrm{mol}$
STP: 1 atm, 273K
Proportionality: $V \propto n$
direct; as one goes up, the other goes up.

Ideal Gas Law

Conversions: $1 \mathrm{~atm}=760 \mathrm{mmHg}=$ 760 torr $=101.3 \mathrm{kPa}$
${ }^{\circ} \mathrm{C}+273=\mathrm{K}$
$22.4 \mathrm{~L}=1 \mathrm{~mol}$
mass/molar mass = mol

Constants:

$\mathrm{R}=0.08206 \mathrm{~L} \mathrm{~atm}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{R}=62.4 \mathrm{~L} \mathrm{mmHg} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
$R=8.314 \mathrm{~L} \mathrm{kPa} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$

Dalton's Partial Pressure

$$
\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3} \ldots
$$

$$
P_{A}=\frac{n_{A}}{n_{A}+n_{B}+n_{C}} \times P
$$

$$
P_{T}=P_{\text {gas }}+P_{\text {water }}
$$

$$
P_{\mathrm{B}}=\frac{n_{B}}{n_{A}+n_{B}+n_{C}} \times P
$$

$$
P_{c}=\frac{n_{c}}{n_{A}+n_{B}+n_{c}} \times P
$$

Variables and Constants

Pressure, \mathbf{P}

Units: atm, mmHg, torr, kPa
Comments: For the ideal gas law, pick the R value with the correct unit.

Volume, V

Units: mL, , cm^{3}, $\mathrm{L}, \mathrm{dm}^{3}$
Comments: mL/1000 = L

Temperature, T
Units: ${ }^{\circ} \mathrm{C}, \mathrm{K}$
Comments: ${ }^{\circ} \mathrm{C}+273=\mathrm{K}$
moles, n
Units: mole
Comments:

