Heating Curve Calculations

Go to the website to the Honors Notes page. You'll see the Heating Curve Notes & a useful video. Check them out and complete this worksheet.

Heating curves show that energy is absorbed by a substance as it warms up, melts or boils and that energy is released from a substance as it cools down, condenses or freezes.

Specific heat equation $(q=mC\Delta T)$ allows to calculate the energy changes as s substance warms or cools, because there's a change in temperature occurring. This happens at A, C & E on the graph shown to the left.

The energies involved with phase changes (B & D) are the Heat of Vaporization (liquid to gas) and the heat of fusion (solid to liquid).

Answer questions 1-4 about the heating curve above:

- 1) What equation is used at A, C & E?_____
- Assuming the substance is water, what specific heat value is used at process A?
 C? ______ E? _____
- 3) What equation is used at B? _____What phase change happens at B? _____. For water, what temperature corresponds to B? _____
 What constant for water is used at B? _____
- 4) What equation is used at D? ______What phase change happens at D? ______ For water, what temperature corresponds to D? _____What constant is used at D? ______
- 5) Calculate the energy required to heat 30.0 g of H₂O from 42°C to 125°C. (Hint: 3 steps, all positive)

6) Calculate the energy released when cooling 10.0 g H_2O from 50°C to -23°C. (Hint: 3 steps, all negative)

7) How much energy is used to heat 250 g of ice from -15°C to steam at 105°C? (Hint: 5 steps, all positive)

8) How much energy is released from 23 g of H_2O at 109°C as it cools to -46°C? (Hint: 5 steps, all neg.)