Limiting Reactant Worksheet

1. Calcium hydroxide, used to neutralize acid spills, reacts with hydrochloric acid according to the following equation:
$\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
a. If you have spilled 6.3 mol of HCl and put 2.8 mol of $\mathrm{Ca}(\mathrm{OH})_{2}$ on it, which substance is the limiting reactant?
b. How many moles of the excess reactant remain?
2. Aluminum oxidizes according to the following equation:

$$
4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}
$$

a. Powdered $\mathrm{Al}(0.048 \mathrm{~mol})$ is placed into a container containing 0.030 mol O . What is limiting reactant?
b. How many moles of the excess reactant remain?
3. Heating zinc sulfide in the presence of oxygen yields the following:

$$
\mathrm{ZnS}+\mathrm{O}_{2} \rightarrow \mathrm{ZnO}+\mathrm{SO}_{2}
$$

a. If 1.72 mol of ZnS is heated in the presence of 3.04 mol of O_{2}, which is the limiting reactant? (Balance the equation first)
b. How many moles of the excess reactant remain?
4. Chlorine can replace bromine in bromide compounds forming a chloride compound and elemental bromine. The following equation is an example of the reaction:

$$
2 \mathrm{KBr}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{KCl}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{l})
$$

a. When 0.855 g of Cl_{2} and 3.205 g of KBr are mixed in solution, which is the limiting reactant?
b. How many grams of each product are formed?
5. A process by which zirconium metal can be produced from the mineral zirconium (IV) orthosilicate, ZrSiO_{4}, starts by reacting it with chlorine gas to form zirconium (IV) chloride.
$\mathrm{ZrSiO}_{4}+2 \mathrm{Cl}_{2} \rightarrow \mathrm{ZrCl}_{4}+\mathrm{SiO}_{2}+\mathrm{O}_{2}$
What mass of ZrCl_{4} can be produced if 862 g of ZrSiO_{4} and $950 . \mathrm{g}$ of Cl_{2} are available? (You must first determine limiting reactant).
6. In the reaction $\mathrm{BaCO}_{3}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$, what mass of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ can be formed by combining $55 \mathrm{~g} \mathrm{BaCO}_{3}$ and $26 \mathrm{~g} \mathrm{HNO}_{3}$?
7. Aspirin, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$, is synthesized by the reaction of salicylic acid, $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}$, with acetic anhydride, $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}$.
$2 \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}+\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3} \rightarrow 2 \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{O}$
a. When 20.0 g of $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}$ and 20.0 g of $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}$ react, which is the limiting reagent?
b. What mass in grams of aspirin are formed?

