\qquad Name \qquad Period \qquad

Concentrations and Dilutions Worksheet

A way of expressing concentration is called molarity. As is clear from its name, molarity involves moles. Molarity is the number of moles of solute dissolved in one liter of solution. The units, therefore are moles per liter, specifically it's moles of solute per liter of solution. Rather than writing out moles per liter, these units are abbreviated as M and it means moles per liter (not just moles).

You must be very careful to distinguish between moles and molarity. "Moles" measures the amount or quantity of material you have; "molarity" measures the concentration of that material. So when you're given a problem or some information that says the concentration of the solution is 0.1 M that means that it has 0.1 mole for every liter of solution; it does not mean that it is 0.1 moles.

Helpful Equations:

Concentrations $=\frac{\text { Amount of solute }}{\text { Amount of solution }} \quad$ Molarity $=\frac{\text { Moles of solute }}{\text { Liters of Solution }}$

Dilution: $\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$ ($\mathrm{M}=$ Molarity of solution, $\mathrm{V}=$ volume of solution)

1. A solution is made by adding 27.5 g of calcium fluoride to enough water to make 1.00 L . What is the concentration (molarity)?
2. What is the concentration of each ion in solution \#1? (Hint: first write an equation)
3. How much solute is contained in $500 . \mathrm{mL}$ of a 2.5 M solution? (Hint: Liters)
4. A student needs 250 mL of a 0.75 M solution of sodium acetate. How many moles of sodium acetate are needed?
5. A student has 12.0 M HCl and needs to make 1.5 L of 2.0 M HCl . What volume of the concentrated acid is needed?
6. Another student adds $500 . \mathrm{mL}$ of $\mathrm{H}_{2} \mathrm{O}$ to the solution made in \#5. What is the concentration of the new solution? (Assume the volumes are additive.)
7. A third student wants to dilute the solution in $\# 6$ to 1.0 M . How much water must be added? (Assume the volumes are additive.)
8. If 95.0 mL of rubbing alcohol are added to enough water to make 150.0 mL , what is the volume $\%$?

Solubility and Solubility Curves Worksheet

Define the following:
Unsaturated:
Saturated:
Supersaturated:

Use the solubility curves to the left and on the back of this paper to answer the following questions:

1. How many grams of sodium nitrate can be dissolved in 100 grams of water at $10^{\circ} \mathrm{C}$? \qquad
2. How many grams of sodium nitrate can be dissolved in 100 grams of water at $40^{\circ} \mathrm{C}$? \qquad
3. How many grams of sodium chloride can be dissolved in 100 grams of water at $10^{\circ} \mathrm{C}$? \qquad
4. How many grams of sodium chloride can be dissolved in 100 grams of water at $90^{\circ} \mathrm{C}$? \qquad
5. How many grams of potassium chromate can be dissolved in 100 grams of water at $20^{\circ} \mathrm{C}$? \qquad
6. What kind of solution
(unsaturated, saturated, supersaturated) would be formed if 40 grams of KCl were dissolved in 100 grams of water at $60^{\circ} \mathrm{C}$?
7. What kind of solution (unsaturated, saturated, supersaturated) would be formed if the solution in \#6 were cooled to $10^{\circ} \mathrm{C}$?
8. At what temperature would a solution that contains 80 grams of ammonium chloride dissolved in 100 g of water be saturated?
9. What kind of solution (unsaturated, saturated, supersaturated) would be formed if 80 g of potassium chloride were dissolved in 100 grams of water at $80^{\circ} \mathrm{C}$?
10. How much solute would precipitate out if the solution in \#9 were to cool to $50^{\circ} \mathrm{C}$?
11. How many grams of sulfur dioxide can be dissolved in 100 grams of water at $30^{\circ} \mathrm{C}$?
12. In general, when you raise the temperature of water, can you dissolve more or less solid?
13. In general, when you raise the temperature of water, can you dissolve more or less gas? \qquad
