Gro	up	ne				Period	
mole	umber of moles on solute per l	essing concentration for solute dissolved in		As is clear from the units, there	its name, molarity i efore are moles pe	nvolves moles. Molarity r liter, specifically it's previated as M and it	is
of m	You must be naterial you have;	very careful to disti ; "molarity" measure the concentration of	s the concentration o	f that material. S	So when you're give	s the amount or quantity en a problem or some or every liter of solution; i	
Help	oful Equations:						
Co	oncentrations = _	Amount of solute Amount of solution	on	Molarity = <u>Mo</u>	oles of solute Liters of Solution		
Di	Iution: $M_1V_1 = M_2$	V_2 (M = Molarity of	solution, V= volume	of solution)			
	A solution is mad (molarity)?	de by adding 27.5 g	of calcium fluoride to	enough water to	o make 1.00L. Wha	at is the concentration	
2.	What is the conc	entration of each io	n in solution #1? (Hin	t: first write an e	quation)		
3.	How much solute	e is contained in 500). mL of a 2.5 M solut	ion? (Hint: Liters	3)		
4.	A student needs	250 mL of a 0.75 M	solution of sodium a	cetate. How ma	ny moles of sodiun	n acetate are needed?	
5.	A student has 12	2.0 M HCl and needs	s to make 1.5L of 2.0	M HCI. What vo	olume of the conce	ntrated acid is needed?	
		adds 500.mL of H_2 0 umes are additive.)) to the solution made	e in #5. What is	the concentration of	of the new solution?	
	A third student w additive.)	ants to dilute the sc	olution in #6 to 1.0 M.	How much wate	r must be added?	(Assume the volumes a	re
8.	If 95.0 mL of rub	bing alcohol are add	ded to enough water t	o make 150.0 m	ıL, what is the volui	me %?	

Solubility and Solubility Curves Worksheet

Define the following: Unsaturated:	
Saturated:	_
Supersaturated:	_
	_

Use the solubility curves to the left and on the back of this paper to answer the following questions:

- 1. How many grams of sodium nitrate can be dissolved in 100 grams of water at 10°C? ____
- 2. How many grams of sodium nitrate can be dissolved in 100 grams of water at 40°C?
- 3. How many grams of sodium chloride can be dissolved in 100 grams of water at 10°C? ____
- 4. How many grams of sodium chloride can be dissolved in 100 grams of water at 90°C? ____
- 5. How many grams of potassium chromate can be dissolved in 100 grams of water at 20°C?____
- 6. What kind of solution

(unsaturated, saturated, supersaturated) would be formed if 40 grams of KCl were dissolved in 100 grams of water at 60°C?

- 7. What kind of solution (unsaturated, saturated, supersaturated) would be formed if the solution in #6 were cooled to 10°C?_____
- 8. At what temperature would a solution that contains 80 grams of ammonium chloride dissolved in 100 g of water be saturated?
- 9. What kind of solution (unsaturated, saturated, supersaturated) would be formed if 80g of potassium chloride were dissolved in 100 grams of water at 80°C?
- 10. How much solute would precipitate out if the solution in #9 were to cool to 50°C?
- 11. How many grams of sulfur dioxide can be dissolved in 100 grams of water at 30°C?
- 12. In general, when you raise the temperature of water, can you dissolve more or less solid?
- 13. In general, when you raise the temperature of water, can you dissolve more or less gas?