Oxidation Numbers Worksheet

Directions: Use the *Rules for Assigning Oxidation Numbers* to determine the oxidation number assigned to each element in each of the given chemical formulas.

	Formula	Element and Oxidation Number				
1.	Cl ₂	Cl				
2.	Cl ⁻	Cl				
3.	Na	Na				
4.	Na⁺	Na				
5.	O ₂	0				
6.	N ₂	Ν				
7.	Al ⁺³	Αl				
8.	H₂O	Н	0			
9.	NO ₃	Ζ	0			
10.	NO ₂	Ζ	0			
11.	Cr ₂ O ₇ ²⁻	Cr	0			
12.	KCl	K	CI			
13.	NH ₃	Ν	Н			
14.	CaH₂	Ca	Н			
15.	SO ₄ ²⁻	S	0			

	Formula	Element and Oxidation Number							
16.	Na ₂ O ₂	Na		0					
17.	SiO ₂	Si		0					
18.	CaCl ₂	Ca		Cl					
19.	PO ₄ ³⁻	Р		0					
20.	MnO ₂	Mn		0					
21.	FeO	Fe		0					
22.	Fe ₂ O ₃	Fe		0					
23.	H ₂ O ₂	Н		0					
24.	CaO	Ca		0					
25.	H ₂ S	Н		S					
26.	H ₂ SO ₄	Н		S		0			
27.	NH ₄ Cl	N		Н		Cl			
28.	K ₃ PO ₄	K		Р		0			
29.	HNO ₃	Н		N		0			
30.	KNO ₂	K		Ν		0			

Rules for Assigning Oxidation Numbers

- 1. The oxidation number of any uncombined element is 0.
- 2. The oxidation number of a monatomic ion equals the charge on the ion.
- 3. The more-electronegative element in a binary compound is assigned the number equal to the charge it would have if it were an ion.
- 4. The oxidation number of fluorine in a compound is always -1.
- 5. Oxygen has an oxidation number of -2 unless it is combined with F (when it is +2), or it is in a peroxide (such as H_2O_2 or Na_2O_2), when it is -1.
- 6. The oxidation state of hydrogen in most of its compounds is +1 unless it is combined with a metal, in which case it is -1.
- 7. In compounds, the elements of groups 1 and 2 as well as aluminum have oxidation numbers of +1, +2, and +3 respectively.
- 8. The sum of the oxidation numbers of all atoms in a neutral compound is 0.
- 9. The sum of the oxidation numbers of all atoms in a polyatomic ion equals the charge of the ion.