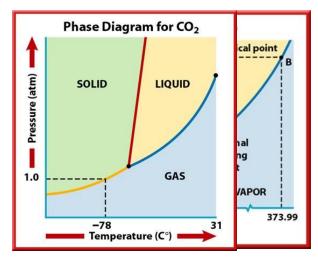
SOLIDS AND LIQUIDS

States of Matt	er		
There are	states of matter. A solid is a	form of matter that has its own defin	nite
and volume.	A solid cannot	The particles can vibrate but ca	nnot move around.
The particles of	of matter in a solid are very tightly	y; when l	heated, a solid
expands, but o	only slightly. A liquid is a form o	f matter that flows, has	
(definite) volu	ime, and takes the	of its container. The particle	es in a liquid are not
rigidly held in	place and are	closely packed than are the particle	es in a solid; liquid
particles are a	ble to move past each other. A lie	quid is not very	Like
solids, liquids	tend to expand when heated. A g	gas is a form of matter that flows to	conform to the
	of its container and fil	lls the entire	of its
container. Co	mpared to solids and liquids, the	particles of gases are very far apart.	Because of the
significant am	ount of space between particles, §	gases are easily compressed	
is composed o	of electrons and positive ions at te	mperatures greater than	°C. The sun
and other stars	s are examples of plasma.		
• Identif	by the following as a property of a	solid, liquid or gas. The answer ma	y include more that
one sta	ate of matter.		
	1. flows and takes the shape of a	container	
	2. compressible		
	3. made of particles held in a spe	ecific arrangement	
	4. has definite volume		
	5. always occupies the entire spa	ace of its container	
	6. has a definite volume but flow	/S	
The word	refers to th	e gaseous state of a substance that is	s a solid or a liquid
at room tempe	erature. For example, steam is a v	rapor because at room temperature v	water exists as a
liquid. Some	substances are described as	, which mea	ns that they change
to a gas easily	at room temperature. Alcohol ar	nd gasoline are	volatile than
water. Kinetic	c-molecular theory predicts the co	onstant motion of the liquid particles	s. Individual liquid
molecules do	not have fixed positions in the liq	uid. However, forces of	

between liquid particles limit their range of motion	on so that the particles remain cl	osely packed in a
fixed volume. These attractive forces are called		_ forces. Inter =
between. Molecular = molecules. A liquid diffu	ises more	than a gas at
the same temperature, however, because intermo	lecular attractions interfere with	the flow.
is a measure of	the resistance of a liquid to flow	. Viscosity decreases
with temperature.	Particles in the middle of the lic	quid can be attracted
to particles above them, below them, and to eithe	er side. For particles at the surface	ce of the liquid, there
are no attractions from above to balance the attra	ections from	Thus, there is a net
attractive force pulling down on particles at the s	surface.	<u> </u>
is a measure of the inw	ard pull by particles in the interior	or. Soaps and
detergents decrease the surface tension of water b	by disrupting the	bonds
between water molecules. For a substance to be	a solid rather than a liquid at a g	iven temperature,
there must be strong attractive forces acting betw	veen particles in the solid. These	e forces limit the
motion of the particles to	around fixed locations	in the solid. Thus,
there is more order in a solid than in a liquid. Th	ne particles can only vibrate and	revolve in place.
Because of this order, solids are much less	than liquids and	gases. In fact, solids
are not classified as fluids. Most solids are more	than most	liquids. A crystalline
solid is a solid whose atoms, ions, or molecules a	are arranged in an orderly, geome	etric,
three-dimensional structure. Most solids are	Amorph	nous solids lack an
orderly internal structure. Think of them as	liqu	ids. Examples of
amorphous solids include	and glass.	
Phase Changes		
If a substance is usually a liquid at room tempera	nture (as water is), the gas phase	is called a
Vaporization is the proces	ss by which a liquid changes into	a gas or vapor.
Vaporization is an endothermic process - it requi	res When va	aporization occurs
only at the of an uncor	ntained liquid (no lid on the conf	tainer), the process is
called evaporation. Molecules at the surface bre	eak away and become gas. Only	those with enough
energy (KE) escape.	Evaporation is a	process.
It requires heat, which is endothermic.	pressure is the pre	ssure exerted by a


vapor over a liquid. As temperature increases, water molec	ules gain kinetic energy and vapor pressure
When the vapor pressure of a l	iquid equals atmospheric pressure, the
liquid has reached its boiling point, which is 100°C for water	r at sea level. Recall that standard
atmospheric pressure equals atm. At this point, mol	ecules throughout the liquid have the
energy to enter the gas or vapor phase. The temperature of a	a liquid can never above
its boiling point. Boiling is an	process. It requires the addition of
heat. As you go up into the mountains (increase in elevation	n), atmospheric pressure
Lower external pressure red	quiresvapor
pressure. Lower vapor pressure means lower	point. As a result, spaghetti
cooks slower in the mountains than at the beach. When you	use a pressure cooker to can vegetables,
the external pressure around the mason jars rises. This raise	es the vapor pressure needed in order for
water to boil. In turn, the boiling point is raised so the food	cooks
Some phase changes release energy into their surroundings. it may change into a Condensation i	
becomes a liquid. It is the of vaporiz	
vaporization can equal the rate of condensation. When first	
the surface of the liquid. As the molec	
condense back to a liquid. Equilibrium is reached when the	
the rate of condensation. Molecules are constantly changing	
vapor remains	-
The melting point of a solid is the temperature at which the	holding the
particles together are broken and the solid becomes a liquid.	
until they shake themselves free of	
temperature at which a liquid becomes a	
the as the melting point. The process by	
without first becoming a liquid is called	
ice are examples of solids that sublime. When a substance c	
solid without first becoming a liquid, the process is called	. Deposition

is the reverse of sublimation. ______ is an example of water deposition.

- Classify the following phase changes.
 - 1. dry ice (solid carbon dioxide) to carbon dioxide gas
 - 2. ice to liquid water _____
 - 3. liquid water to ice _____
 - 4. water vapor to liquid water _____

Phase Diagrams

Temperature and _____ control the phase of a substance. A phase diagram is a graph of pressure versus temperature that shows in which phase a substance exists under different conditions of temperature and pressure. A phase diagram typically has _____ regions, each representing a different phase and three curves that _____ each phase.

The points on the curves (lines) indicate conditions under which two phases coexist. The critical point indicates the critical pressure and the critical temperature above which a substance cannot exist as a ______. The triple point is the point on a phase diagram that represents the temperature and pressure at which three phases of a

substance can ______. The ______ slope of the solid-liquid line in the phase diagram for water indicates that the solid floats on its liquid.

- What happens to solid CO₂ at -100 °C and 1 atm pressure as it is heated to room temperature?
- What happens to water at 1 atm as the temperature rises from -15°C to 60°C?
- What state of matter is water at 50°C and 20 atm?
- At what temperature does the triple point occur for water?
- At what temperature does the critical point occur for carbon dioxide?
- At standard pressure and -78°C, what phase change occurs for carbon dioxide?
- What state of matter is carbon dioxide at -80°C and 2 atm?