Name: $\qquad$ Date: $\qquad$ Period: $\qquad$

## Stoichiometry

1. Given the following equation: $2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$

Write the following molar ratios:
a. $\quad \frac{\mathrm{C}_{4} \underline{\mathrm{H}}_{10}}{\mathrm{O}_{2}} \quad-\frac{\mathrm{mol} \mathrm{C}_{4} \mathrm{H}_{10}}{\mathrm{~mol} \mathrm{O}_{2}}$
b. $\quad \frac{\mathrm{O}_{2}}{\mathrm{CO}_{2}} \quad-\frac{\mathrm{mol} \mathrm{O}_{2}}{\mathrm{~mol} \mathrm{CO}_{2}}$
c. $\quad \frac{\mathrm{O}_{2}}{\mathrm{H}_{2} \mathrm{O}} \quad-\frac{\mathrm{mol} \mathrm{O}_{2}}{\mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}$
d. $\quad \underset{\mathrm{CO}_{4}}{\mathrm{CO}_{2}} \quad-\underset{\mathrm{H}_{10}}{\operatorname{mol~CO}_{4} \underline{\mathrm{H}}_{10}}$
e. $\frac{\mathrm{C}_{4} \mathrm{H}_{10}}{\mathrm{H}_{2} \mathrm{O}}-\frac{\mathrm{mol} \mathrm{C}_{4} \mathrm{H}_{10}}{\mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}$
2. Given the following equation: $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$

How many moles of $\mathrm{O}_{2}$ can be produced by reacting 12.0 moles of $\mathrm{KClO}_{3}$ ?
3. Given the following equation: $2 \mathrm{~K}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{KCl}$

How many grams of $\mathrm{KCl}(74.55 \mathrm{~g} / \mathrm{mol})$ is produced from 2.50 mol of K ?

4. Given the following equation: $\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}$

How many grams of $\mathrm{NaOH}(40.00 \mathrm{~g} / \mathrm{mol})$ is produced from 120 grams of $\mathrm{Na}_{2} \mathrm{O}(61.98 \mathrm{~g} / \mathrm{mol})$ ?

How many moles of $\mathrm{Na}_{2} \mathrm{O}$ are required to produce 160 grams of $\mathrm{NaOH}(40.00 \mathrm{~g} / \mathrm{mol})$ ?
5. Given the following equation: $8 \mathrm{Fe}+\mathrm{S}_{8} \rightarrow 8 \mathrm{FeS}$

What mass of iron, Fe , is needed to react with 16.0 grams of sulfur, $\mathrm{S}_{8}$ ?

How many grams of iron, Fe , are reacted to form 16.0 grams of $\mathrm{FeS}(87.91 \mathrm{~g} / \mathrm{mol})$ ?
6. Given the following equation: $2 \mathrm{NaClO}_{3} \rightarrow 2 \mathrm{NaCl}+3 \mathrm{O}_{2}$
12.0 moles of $\mathrm{NaClO}_{3}$ will produce how many grams of $\mathrm{O}_{2}$ ?

How many grams of $\mathrm{NaCl}(58.44 \mathrm{~g} / \mathrm{mol})$ are produced when 80.0 grams of $\mathrm{O}_{2}$ are produced?
7. Given the following equation: $\mathrm{Cu}+2 \mathrm{AgNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}$

How many moles of Cu are needed to react with $350 \mathrm{~g} \mathrm{AgNO}_{3}(169.88 \mathrm{~g} / \mathrm{mol})$ ?

If 89.5 grams of Ag were produced, how many grams of Cu reacted?
8. Molten iron and carbon monoxide are produced in a blast furnace by the reaction of iron(III) oxide and coke (pure carbon). If 25,000 grams of pure $\mathrm{Fe}_{2} \mathrm{O}_{3}(159.70 \mathrm{~g} / \mathrm{mol})$ are used, how many grams of iron can be produced? The reaction is: $\quad \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}$
9. The average human requires 120 grams of glucose ( $180.18 \mathrm{~g} / \mathrm{mol}$ ) per day. How many grams of $\mathrm{CO}_{2}$ $(44.01 \mathrm{~g} / \mathrm{mol})$ are required to produce this amount of glucose in plants? The photosynthetic reaction is: $\quad 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}$

