## Kinetics

Ms. Peace

## Lesson 1

### 6.1 Collision Theory and Rates of Reactions

## We Are Here



## The Rate of Reactions

- In simple terms, the rate of a reaction can be thought of as its speed
- Some reactions are very fast
- Some reactions are very slow


## Discuss:

- Think of examples of 'fast' and 'slow' reactions
- Why is 'speed' not a good word to use in this context?


## Defining the Rate of Reaction

- The rate of reaction is:

$$
\text { Rate }=\frac{-\Delta[R]}{\Delta t}=\frac{\Delta[P]}{\Delta t}
$$

- Where:
- $\Delta[R]$ is change in concentration of reactants (final-initial)
- $\Delta[\mathrm{P}]$ is change in concentration of products (final-initial)
- $\Delta t$ is change in time (final-initial)



## Measuring Reaction Rates

| Technique | Apparatus/Notes |
| :--- | :--- |
| Collecting gas | Using a gas syringe or inverted measuring cylinder filled with <br> water |
| Mass loss | Reaction conducted on a balance...if it produces a gas the mass <br> will decrease |
| Colour change | Measured using a colorimeter |
| Obscured cross | Useful if reaction produces a precipitate (for example sodium <br> thiosulphate and acid) |
| Iodine clock | Produces a sudden colour change from colourless to <br> black....monitors any reaction producing iodine |
| pH | Monitored using a pH probe |
| Conductivity | Decrease in ion concentration..measured using a conductivity <br> probe and meter |
| Temperature change | Not ideal as it is difficult to prevent heat loss |





view from the top



$>$



## Analyzing Reaction Rate Graphs

Initial rates are fastest
-Graph steepest
-Lower concentration
-Lower frequency of collision

## 



## Analyzing Reaction Rate Graphs

Graph becomes less steep
-Rate decreases
-Higher concentration
-Higher frequency of collision

## $\uparrow$ 个 .0 .0 0.0 0.0 0.0 0 0



## Analyzing Reaction Rate Graphs

Graph levels off
Reactants are all used up and no more products are being formed


## Analyzing Reaction Rate Graphs



Reaction Progress or Time

## Analyzing Reaction Rate Graphs

$\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CaCl}_{2}(\mathrm{aq})$
Same initial concentration
$100 \mathrm{~cm}^{3} / 1000=0.1 \mathrm{dm}^{3}$ $\left(2.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)\left(0.1 \mathrm{dm}^{3}\right)$ $=0.20 \mathrm{~mol} \mathrm{HCl}$ $=0.1 \mathrm{~mol} \mathrm{CO}_{2}$
$50 \mathrm{~cm}^{3} / 1000=0.05 \mathrm{dm}^{3} \frac{\text { 气 }}{\frac{5}{5}}$ $\left(2.0 \mathrm{~mol} \mathrm{dm}^{-3}\right)\left(0.05 \mathrm{dm}^{3}\right)$ $=0.10 \mathrm{~mol} \mathrm{HCl}$
$=0.05 \mathrm{~mol} \mathrm{CO}_{2}$

## Analyzing Reaction Rate Graphs

$\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CaCl}_{2}(\mathrm{aq})$

Initial rate is the same but half as much gas is produced because concentration is the same


## Analyzing Reaction Rate Graphs

$\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CaCl}_{2}(\mathrm{aq})$
Same initial volume
$100 \mathrm{~cm}^{3} / 1000=0.1 \mathrm{dm}^{3}$
$\left(2.0 \mathrm{~mol} \mathrm{dm}^{-3}\right)\left(0.1 \mathrm{dm}^{3}\right)$
$=0.20 \mathrm{~mol} \mathrm{HCl}$
$=0.10 \mathrm{~mol} \mathrm{CO}_{2}$
$100 \mathrm{~cm}^{3} / 1000=0.05 \mathrm{dm}^{\stackrel{0}{3}}{ }^{\frac{0}{0}}$
$\left(1.0 \mathrm{~mol} \mathrm{dm}^{-3}\right)\left(0.1 \mathrm{dm}^{3}\right)$
$=0.10 \mathrm{~mol} \mathrm{HCl}$
$=0.05 \mathrm{~mol} \mathrm{CO}_{2}$
$100 \mathrm{~cm}^{3}$ of $2.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$

Time (s)

## Analyzing Reaction Rate Graphs

$\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CaCl}_{2}(\mathrm{aq})$
Initial rate is lower and half as much gas is produced because concentration is different


## Analyzing Reaction Rate Graphs

$\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CaCl}_{2}(\mathrm{aq})$
Different initial volume and concentration
$100 \mathrm{~cm}^{3} / 1000=0.1 \mathrm{dm}^{3}$
$\left(2.0 \mathrm{~mol} \mathrm{dm}^{-3}\right)\left(0.1 \mathrm{dm}^{3}\right)$
$=0.20 \mathrm{~mol} \mathrm{HCl}$
$=0.10 \mathrm{~mol} \mathrm{CO}_{2}$
$200 \mathrm{~cm}^{3} / 1000=0.2 \mathrm{dm}^{3} \frac{\stackrel{\text { ® }}{\frac{0}{0}}}{>}$
$200 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ $\left(1.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)\left(0.2 \mathrm{dm}^{3}\right)$
$=0.20 \mathrm{~mol} \mathrm{HCl}$
$=0.1 \mathrm{~mol} \mathrm{CO}_{2}$
$100 \mathrm{~cm}^{3}$ of $2.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$

## Analyzing Reaction Rate Graphs

$\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CaCl}_{2}(\mathrm{aq})$
Initial rate is lower and the same amount of gas Is produced


## Analysis of Reaction Rate Graphs

Analysis of Reaction Rate Graphs

## Analysis of Reaction Rate Graphs

Tangent lines represent the rate of the reaction -Referred to as a gradient

Lower gradient
-lower rate
Steeper gradient -higher rate


## Lesson 2

### 6.1 Collision Theory and Rates of Reactions

## We Are Here



## Collision Theory

Two conditions must be fulfilled:

- A collision must involve more than a certain minimum amount of energy
- Reactions occur as the result of two particles colliding with enough energy.
- 'Enough energy' is better known as the activation energy
- Molecules must collide with the correct orientations
- If molecules do not collide with the correct orientation they will not react


## Collision Theory

- Anything that increases the number of collisions, or the proportion of collisions that have enough energy will increase the rate of reaction

Not every collision with energy greater than the activation energy results in a reaction

## Potential Energy Profile



## Factors Affecting Reaction Rate

| Concentration of reactants | As amount of particles increases, <br> collision frequency increases |
| :--- | :--- |
| Pressure (reactions involving <br> gases) | As pressure increases, collision <br> frequency increases |
| Surface Area | More finely divided surface, more <br> chance of particles to collide |
| Temperature | As the temperature increases, the <br> rate of the reaction increases <br> exponentially |
| Catalysis | Increases the rate of the reaction <br> without being used up in the <br> reaction; lowers activation energy |



Low concentration $=$ Few collisions


High concentration $=$ More collisions



Progless of fraction


Time from start of reaction

## Relationship Between Temp and Energy

- At the same temperature lighter particles travel faster than heavier ones

The main reason that the rate of reaction increases with temperature is an increase in the number of particles with energy greater than the activation energy

## Maxwell Boltzmann

- Two scientists, James Maxwell and Ludwig Boltzmann, proposed an equation that could be used to predict the speeds of ideal gas particles (atoms or molecules) at any temperature.
- Their equation is based on statistics and thermodynamic relationships. It is used by chemists and physicists to predict properties of gases such as pressure and diffusion rates, and it can be used to predict rates of reactions involving gases.


## Maxwell Boltzmann

When a sample of matter is heated, the particles speed up. But what does that mean?

Are all the particles in a sample moving at the same speed?
Do they all speed up equally?
Does mass affect particle speed?

## Maxwell-Boltzmann Distribution

- It is not symmetrical
- No molecules have zero kinetic energy
- At higher energy the line does not reach the energy axis
The area under the curve represents the total number of particles and will not change as the temperature changes


## The Maxwell-Boltzmann Distribution

- Describes how energy is distributed in a collection of particles:

- x-axis: Energy of particles
- $E_{m p}$ : most-populated energy level
- $y$-axis: Number of particles with a given energy
- $\bar{E}$ : the average energy, i.e the temperature


## Maxwell-Boltzmann Distribution



## Maxwell-Boltzmann Distribution


kinetic energy

At higher temp, the activation energy is lowered.

## Maxwell-Boltzmann Distribution Catalyst



## Catalytic Converters

A catalytic converter is an emissions control device that converts toxic gases and pollutants in exhaust gas to less toxic pollutants by catalyzing a redox reaction (an oxidation and a reduction reaction).

How does this apply to Maxwell Boltzmann?

## Occman Razor

The principle of Occam's razor is used as a guide to developing a theory-although we cannot directly see reactions taking place at the molecular level, we can theorize based on the current atomic models.

How can we use this application in the process of collision theory and kinetics?

## Lesson 3

16.1 Reaction Mechanism and Reaction Expression

Main

## We Are Here



## What is a rate equation?

- A rate equation allows us to calculate the rate we would expect for any concentration of reactants.
- For example in the reaction:

$$
A+B \rightarrow C
$$

- The rate equation is:

$$
\text { Rate }=k[A]^{\times}[B]^{y}
$$

- Where:
- [A] and [B] are the concentrations of each reactant
- x and $y$ are the order of reaction with respect to each reactant
- $k$ is the 'rate constant'


## Order of a Reaction

- The rate equation is an experimentally determined equation that relates the rate of the reaction to the concentration of the substances in the reaction mixture
- Assuming temperature and pressure are fixed
- The order of a reaction can be either integer or fractional in nature. The order of a reaction can describe, with respect to a reactant, the number of particles taking part in the rate-determining step
- The overall rate reaction is the sum of the exponents
- Rate= $\mathrm{k}[\mathrm{W}]^{m}[\mathrm{X}]^{n}$
- $\mathrm{m}+\mathrm{n}=$ overall order


## Temperature and the Rate Constant

- The rate constant $k$ is essentially a measure of how readily a reaction will take place:
- Higher $\mathrm{k} \rightarrow$ faster reaction
- Lower $\mathrm{k} \rightarrow$ slower reaction
- k is dependent on temperature
- As temperature increases, so does $k$
- As temperature decreases, so does k


## What is reaction order?

## $\mathrm{O}^{\text {th }} \operatorname{Order}\left(\mathrm{O}^{\circ}\right)$

Changing the concentration does not affect the rate

Doubling the concentration of a reactant would have no effect on rate
$1^{\text {st }} \operatorname{Order}\left(1^{\circ}\right)$


## $2^{\text {nd }} \operatorname{Order}\left(2^{\circ}\right)$

Rate $\propto[R]^{2}$

Doubling the concentration of a reactant would quadruple the rate, tripling it would increase rate nine-fold

## Units of Rate Reaction

Units of k are concentration ${ }^{\left(1-\text {-overall order) } \text { time }^{-1}\right.}$

| Overall <br> Order | Units of k | Examples of <br> units |
| :--- | :--- | :--- |
| 0 | Concentration time ${ }^{-1}$ | $\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$ |
| 1 | time $^{-1}$ | $\mathrm{~s}^{-1}$ |
| 2 | Concentration ${ }^{-1}$ time ${ }^{-1}$ | $\mathrm{~mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$ |
| 3 | Concentration ${ }^{-2}$ time $^{-1}$ | $\mathrm{~mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$ |

## Example

| Run \# | Initial $[\mathbf{A}]\left([\mathbf{A}]_{\mathbf{0}}\right)$ | Initial $[\mathbf{B}]\left([\mathbf{B}]_{\mathbf{0}}\right)$ | Initial Rate $\left(\mathbf{v}_{\mathbf{0}}\right)$ |
| :---: | :---: | :---: | :---: |
| 1 | 1.00 M | 1.00 M | $1.25 \times 10^{-2} \mathrm{M} / \mathrm{s}$ |
| 2 | 1.00 M | 2.00 M | $2.5 \times 10^{-2} \mathrm{M} / \mathrm{s}$ |
| 3 | 2.00 M | 2.00 M | $2.5 \times 10^{-2} \mathrm{M} / \mathrm{s}$ |

- The reaction is $\mathrm{O}^{\text {th }}$ order w.r.t reactant A
- Comparing Runs 2 and 3:
- [A] doubles but [B] remains fixed
- Rate unchanged
- The reaction is $1^{\text {st }}$ order w.r.t reactant $B$
- Comparing Runs 1 and 2:
- $[B]$ doubles but $[A]$ remains fixed
- Rate doubles
- Overall the reaction is $1^{15 t}$ order


## Example

| Experiment | Initial $[\mathbf{A}]\left([\mathbf{A}]_{\mathbf{0}}\right)$ | Initial $[\mathbf{B}]\left([\mathbf{B}]_{\mathbf{0}}\right)$ | Initial Rate $\left(\mathbf{v}_{\mathbf{0}}\right)$ |
| :---: | :---: | :---: | :---: |
| 1 | 1.00 M | 1.00 M | $1.25 \times 10^{-2} \mathrm{M} / \mathrm{s}$ |
| 2 | 1.00 M | 2.00 M | $2.5 \times 10^{-2} \mathrm{M} / \mathrm{s}$ |
| 3 | 2.00 M | 2.00 M | $2.5 \times 10^{-2} \mathrm{M} / \mathrm{s}$ |

- The reaction is $\mathrm{O}^{\text {th }}$ order w.r.t reactant A , and $1^{\text {st }}$ order w.r.t reactant B
- Therefore, the rate equation is:
- Rate $=k[B]$
- The value of k is given by (using values for Experiment 1):
$\mathrm{k}=$ Rate $/[\mathrm{B}]$
$k=1.25 \times 10^{-2} / 1.00=\underline{1.25 \times 10^{-2}} \underline{s}^{-1}$


## Example:

| Experiment | Initial $[\mathrm{NO}] /$ <br> mol dm | Initial $\left[\mathrm{H}_{2}\right] /$ <br> mol dm | Initial rate / <br> $\mathrm{mol}\left(\mathrm{N}_{2}\right) \mathrm{dm}^{-3} \mathrm{~s}^{-1}$ |
| :---: | :---: | :---: | :---: |
| 1 | 0.100 | 0.100 | $2.53 \times 10^{-6}$ |
| 2 | 0.100 | 0.200 | $5.05 \times 10^{-6}$ |
| 3 | 0.200 | 0.100 | $1.01 \times 10^{-5}$ |
| 4 | 0.300 | 0.100 | $2.28 \times 10^{-5}$ |

- The reaction is $1^{\text {st }}$ order w.r.t reactant $\mathrm{H}_{2}$
- Comparing Runs 1 and 2:
- $\left[\mathrm{H}_{2}\right]$ doubles but $[\mathrm{NO}]$ remains fixed
- Rate doubles
- The reaction is $2^{\text {nd }}$ order w.r.t reactant NO
- Comparing Runs 1 and 3:
- $[\mathrm{NO}]$ doubles but $\left[\mathrm{H}_{2}\right]$ remains fixed
- Rate quadruples
- Overall the reaction is $3^{\text {rd }}$ order ( $1^{\text {st }}$ order $+2^{\text {nd }}$ order $=3^{\text {rd }}$ order)


## Example:

| Experiment | Initial $[\mathrm{NO}] /$ <br> mol dm | Initial $\left[\mathrm{H}_{2}\right] /$ <br> mol dm | Initial rate / <br> $\mathrm{mol}\left(\mathrm{N}_{2}\right) \mathrm{dm}^{-3} \mathrm{~s}^{-1}$ |
| :---: | :---: | :---: | :---: |
| 1 | 0.100 | 0.100 | $2.53 \times 10^{-6}$ |
| 2 | 0.100 | 0.200 | $5.05 \times 10^{-6}$ |
| 3 | 0.200 | 0.100 | $1.01 \times 10^{-5}$ |
| 4 | 0.300 | 0.100 | $2.28 \times 10^{-5}$ |

- The reaction is $1^{\text {st }}$ order w.r.t $\left[\mathrm{H}_{2}\right]$, and second order w.r.t [NO]
- Therefore, the rate equation is:
- Rate $=k\left[\mathrm{H}_{2}\right][\mathrm{NO}]^{2}$
- The value of k is given by (using values for Experiment 2):
$\mathrm{k}=$ Rate $/\left[\mathrm{H}_{2}[\mathrm{NO}]^{2}\right.$
$\mathrm{k}=5.05 \times 10^{-6} /\left(0.200 \times 0.100^{2}\right)=\underline{2.53 \times 10^{-3}} \mathrm{~mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$


## Rate-Concentration Graphs

$0^{\text {th }}$ Order
$1^{\text {st }}$ Order
$2^{\text {nd }}$ Order




- No effect
- Gradient O
- Direct proportion
- Gradient positive and constant
- Squared relationship
- Gradient positive and increasing


## Concentration-Time Graphs

$0^{\text {th }}$ Order


Half-life decreases

## $1^{\text {st }}$ Order


$2^{\text {nd }}$ Order


Half-life constant Half-life increases

## Lesson 4

16.1 Reaction Mechanism and Reaction Expression

Main

## We Are Here



Main

## Reflecting on the silly ping-pong balls thing

- What were the main factors that influenced how fast the balls could be passed around?
- Was each step in the reaction the same speed?
- Picture a million ping-pong balls being passed around the circle, which person would have the biggest impact on how long it took to pass them all around.
- How much can the people present after the slow one influence the rate?


## Eating...

- How do you eat a pizza?
- One mouthful at a time!
- Chemical reactions are similar.


Main

## A note on molecularity...

Molecularity describes the number of particles involved in a single step:

Unimolecular: one molecule involved:

$$
A \rightarrow B+C
$$

Bimolecular: two molecules involved

$$
\begin{aligned}
& A+A \rightarrow C \\
& A+B \rightarrow C
\end{aligned}
$$

Termolecular: three molecules involved (extremely rare, you will not encounter these at IB level).

## Mechanisms of Reactions

- A reaction mechanism consists of a series of steps that make up a more complex reaction. Each simple step involves a maximum of two molecules colliding

The slowest step is the rate-determining step.

- Each elementary step has its own rate constant, k, and its own activation energy


## Mechanisms of Reactions

Step 1: $\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{N} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{g})+\mathrm{N} \mathrm{K}_{3}(\mathrm{~g})$
This step is bimolecular
Step 2: $\mathrm{N} \mathrm{O}_{3}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{N} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$
This step is bimolecular

Overall Reaction: $\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{NO}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g})$
$\mathrm{NO}_{3}$ is described as the reaction intermediate

## Potential Energy Profile



## Mechanisms and Rates

## Example 1

- Step 1: $\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{g})+\mathrm{NO}_{3}(\mathrm{~g})$
- Step 2: $\mathrm{yO}_{3}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$
- Overall Reaction: $\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{NO}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g})$
- If you think about it....
- Changing the concentration of CO will not affect the rate
- Because it is involved in a fast step after the RDS, and so the only thing relevant to this step is how quickly the $\mathrm{NO}_{3}$ can be made, and this is made by a step which is very slow.
- Changing the concentration of $\mathrm{NO}_{2}$ will affect the rate
- Due to it being involved in the slow step
- Since it appears twice in the slow step, changing it's concentration will have double the impact

Deducing Rate Equation for Reaction Mechanism

1. Decide on which step is the RDS. The rate of the overall reaction mechanism is equal to the rate of the slow step.
2. Deduce the rate equation from step 1

- In effect, the reaction mechanism is essentially a hypothesis of the sequence of events that has led to the overall reaction converting the reactants into products.
- There could be a number of possible reaction mechanisms that equate with the experimental rate equation


## Reaction Mechanism

Step 1: $\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{g})+\mathrm{NO}_{3}(\mathrm{~g})$
Step 2: $\mathrm{NO}_{3}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$

Overall Reaction: $\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{NO}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g})$

- For temperatures less than 498K, the experimental rate equation for the reaction:
- rate $=\mathrm{k}\left[\mathrm{NO}_{2}\right]^{2}$
- For temperatures greater than 498K, the experimental rate can be found as: - rate=k[ $\left.\mathrm{NO}_{2}\right][\mathrm{CO}]$

Single Step: $\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{NO}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g}) \quad$ (slow)
This is consistent with experimentally determined rate equation

## Lesson 5

16.2 Activation Energy

## We Are Here



Main

## Activation Energy

- Activation energy is the minimum energy two colliding particles need in order to react
- You can think of it as:
- The energy required to begin breaking bonds
- The energy that particles need to overcome the mutual repulsion of their electron shells.


## The Arrhenius Equation

- The Arrhenius Equation tells us how k is related to a variety of factors:

> Where: $\cdot \mathrm{k}$ is the rate constant $\cdot \mathrm{E}_{\mathrm{a}}$ is the activation energy $\cdot T$ is the temperature measured $\quad$ in Kelvins $\cdot \mathrm{R}$ is the gas constant, 8.314 J $\quad \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.

## Rearranging Arrhenius

$$
k=A e^{\frac{-E_{a}}{R T}}
$$

- If we take logs of both sides, we can re-express the Arrhenius equation as follows:

$$
\ln k=\ln A-\frac{E_{a}}{R T}
$$

- This may not look like it, but is actually an equation in the form $y=m x+c$

$$
\ln k=\frac{-E_{a}}{R} \cdot \frac{1}{T}+\ln A
$$

## Where:

- $y$ ' is $\ln k$
-'m' is $-E_{\mathrm{a}} / R$
$\cdot{ }^{-} x$ ' is $1 / T^{\text {a }}$
- 'c' is $\ln \mathrm{A}$


## To determine $\mathrm{E}_{\mathrm{a}}$ Experimentally:

 (Assuming we know the rate equation)- Measure the rate of reaction at various temperatures.
- Keeping all concentrations the same
- Calculate the rate constant, k , at each temperature.
- Plot a graph of $\ln \mathrm{k}$ ( y -axis) vs $1 / T$ (x-axis)

- The gradient of this graph is equal to ' $-E_{a} / R$ ', this can be rearranged to calculate $E_{a}$.

