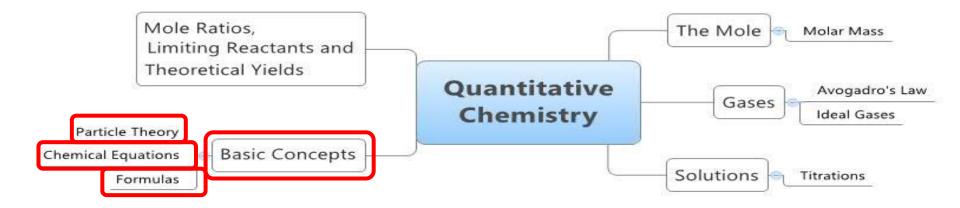
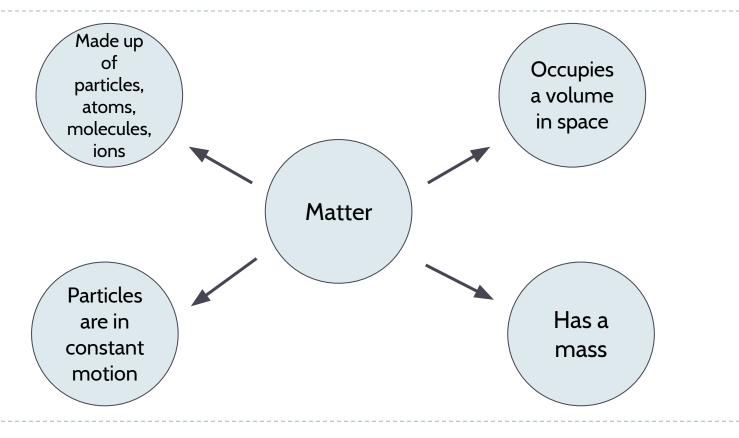
Stoichiometric Relationships

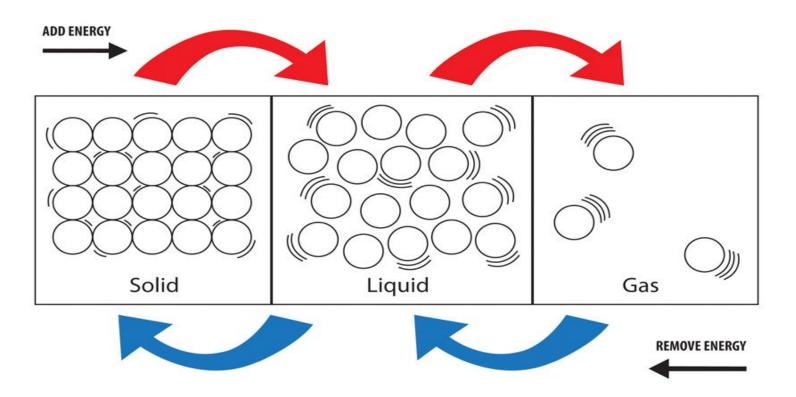
Ms. Peace


Lesson 1

Introduction to Stoichiometry

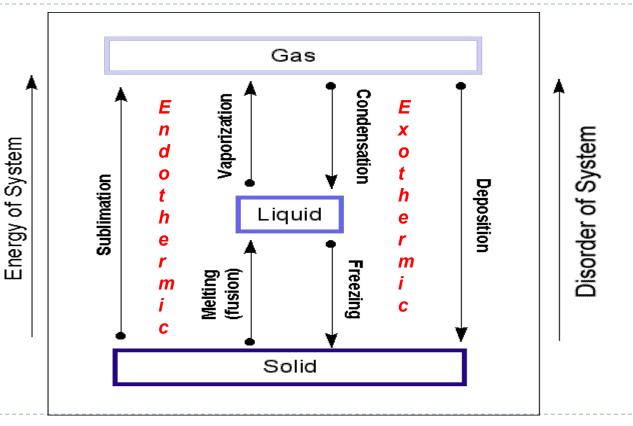


We Are Here


Þ

States of Matter

States of Matter


Properties of States of Matter

	SOLID	LIQUID	GAS
Distance	Close together	Close but further apart than in solids	Particles far apart
Arrangement	Regular	Random	Random
Shape	Fixed shape	No fixed shape-take the shape of the container	No fixed shape-fill the container
Volume	Fixed	Fixed	Not Fixed
Movement	Vibrate	Move around each other	Move around in all directions
Speed	Slowest	Faster	Fastest
Energy	Lowest	Higher	Highest
Forces of attraction	Strongest	Weaker	Weakest

Temperature

- Units:
 - Fahrenheit
 - Celsius
 - Kelvin*
- SI units are a set of standard units that are used in science throughout the world
- Absolute zero: O K or -273° C
 K = ° C + 273

Changes of States

Changes of States

Endothermic:

- Melting and boiling
- Energy must be transferred from the surroundings to bring about these changes
- The potential energy of molecules increases; they vibrate more and move faster

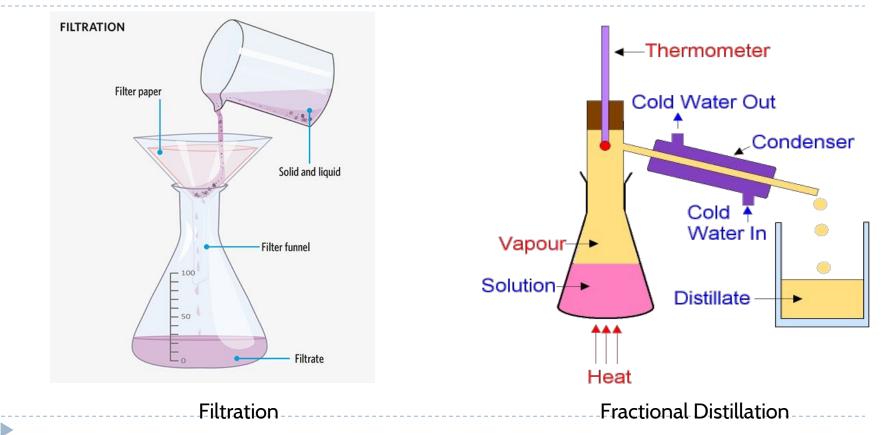
Exothermic:

- Condensation and freezing
- Energy is transferred to the surroundings
- The potential energy of molecules decreases; the vibrate less and move slower

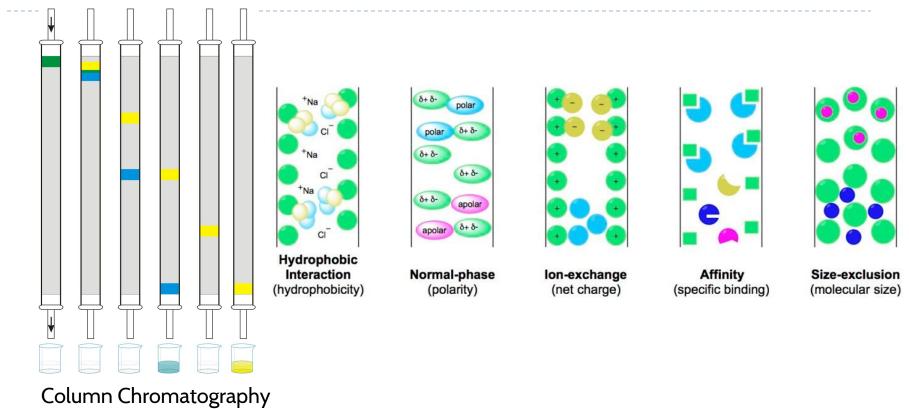
Utilization

- Freeze-drying is a food preservation technique
- Freeze-drying uses the process of sublimation
- Foods that require dehydration are first frozen and then subjected to a reduced pressure
- The frozen water then sublimes directly to water vapor thus dehydrating the food

How Refrigeration Works


Elements and Compounds

- Elements contain atoms of only one type
- Atoms of elements combine in a fixed ratio to form compounds composed of molecules or ions
- These are the fundamental basis in formulas and chemical equations
- Properties of compounds are very different from those of its constitutional elements

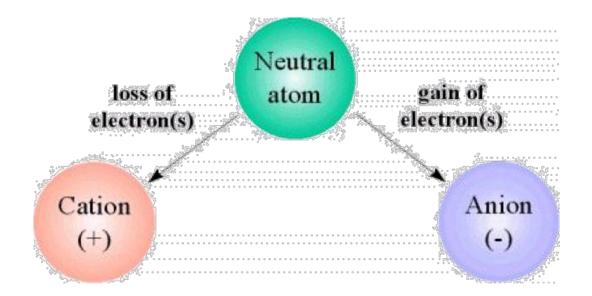

Mixtures

- A pure substance is matter that has a constant composition
 - ► N₂
 - ► H₂O
 - NaCl
 - C₆H₁₂O₆
- Pure substances combine physically to form a mixture
- Mixtures contain more than one element and/or compound that are not chemically bonded together and so retain their individual properties.

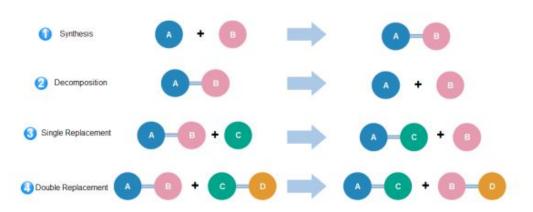
Mixtures

Types of Mixtures

Homogeneous

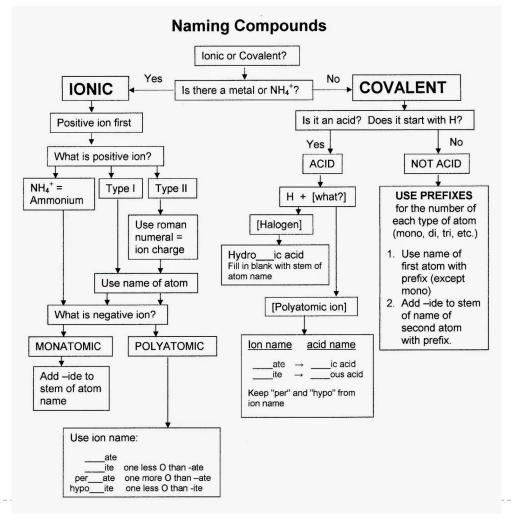

- One phase...you can't see the separation between the parts of the mixture
- For example: seawater is mixture of salt and water, but you can't see the salt.

Heterogeneous


- Multiple phases....you can see the different components of the mixture
- For example: salad dressing is a mixture of oil and vinegar, and you can see the bits of oil and the bits of vinegar.

MYP Review

- State Symbols:
 - ► (s)
 - ► (l)
 - ▶ (g)
 - ► (aq)



Types of Chemical Reactions

Types	Description	Exmaple
Synthesis Reactions	Elements are joined together.	$2H_2 + O_2 \rightarrow 2H_2O$
Decomposition Reactions	A compound breaks into parts.	$2H_2O \rightarrow 2H_2*O_2$
Single Displacement Reactions	A single element replaces an element in a compound.	Zn + 2HCl → H ₂ + ZnCl ₂
Double Displacement Reactions	An element from each of two compounds switch places.	H2SO4 + 2NaOH → Na2SO4 + 2H2O

Four Basic Types of Chemical Reaction

Word Equations

- ► Hydrogen + Oxygen \rightarrow Water
 - REACTANTS PRODUCTS
- $\bullet H_2 + O_2 \rightarrow H_2O$

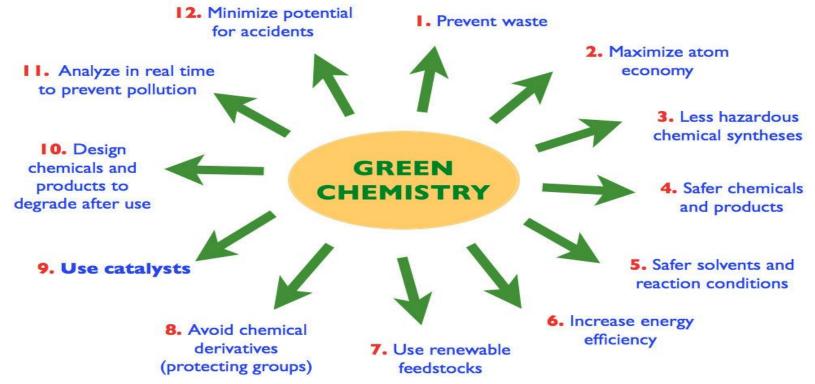
Is this balanced???

Symbol Equations

- The red numbers are called <u>coefficients</u> and tell you the number of each molecule involved in the reaction
 - Required to balance the equation
 - Without them the equation does not balance each side of the reaction would have different numbers of each atom which would break physics
 - You can't change the subscript numbers in the formulas as this changes the chemical
 - If there is no coefficient, it is '1'

Tips for Balancing Equations

- 1) Balance metals
- 2) Balance nonmetals
- 3) Balance oxygen
- 4) Balance hydrogen

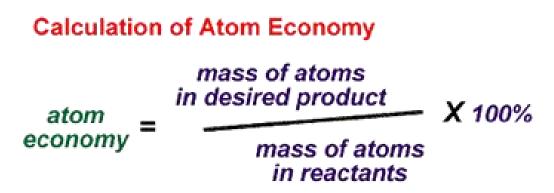


- Try keeping a tally-chart of the numbers of atoms on each side of the equation
- BE PATIENT!!!!

Construct equations and then balance them for each of the following:

- Magnesium (Mg) reacts with hydrochloric acid (HCl) to make magnesium chloride (MgCl₂) and hydrogen gas
- Ethane (C₂H₆) reacts with oxygen gas to make carbon dioxide and water
- Lead nitrate (Pb(NO₃)₂) reacts with aluminium chloride (AlCl₃) to make aluminium nitrate (Al(NO₃)₃) and lead chloride (PbCl₂)
- Barium nitride (Ba₃N₂) reacts with water to make barium hydroxide (Ba(OH)₂) and ammonia (NH₃)
- Ammonium perchlorate (NH₄ClO₄) reacting with aluminium to make aluminium oxide (Al₂O₃), aluminium chloride (AlCl₃), nitric oxide (NO) and water

Extension: Write a flow chart that can be followed to let you to balance equations Main **Green chemistry** is the design of **chemical** products and processes that reduce or eliminate the generation of hazardous substances.



Atom Economy

- Utilization of synthetic reactions and industrial processes that must be increasingly efficient to preserve raw materials and produce fewer and less toxic emissions
- Developed by Professor Barry Trost of Stanford University
- Atom economy looks at the level of efficiency of chemical reactions by comparing the molecular mass of atoms in the reactants with the molecular mass of useful compounds

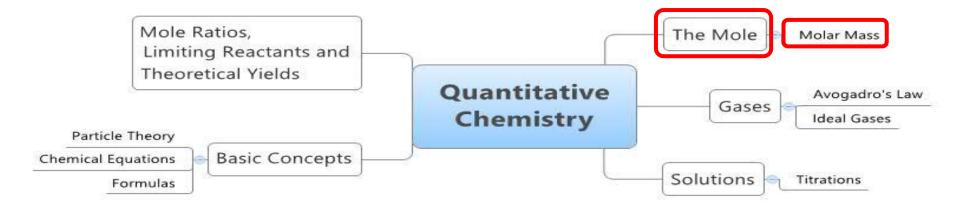
Atom Economy

 Atom economy is the percentage of reactants changed to useful products

- In an ideal chemical process the amount of reactants = amounts of products produced
- What does it mean if there is an atom economy of 100%?

Key Points

- The properties of solids, liquids and gases are due to the arrangement and motion of their particles
- Mixtures can be homogeneous or heterogeneous
- Equations must be balanced to ensure that mass is conserved
- A high atom economy means fewer atoms are being wasted


Lesson 2

Formulas and Composition by Mass

We Are Here

Þ

SI Units

- System of International Units was developed to transcend all languages and cultures
- The International Bureau of Weights and Measures (BIPM) monitors the correct use of SI units in all applications of science

The SI Units

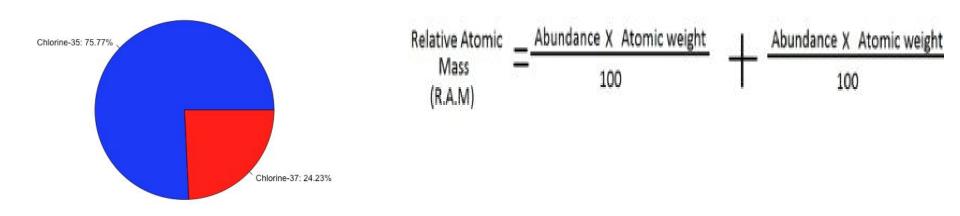
Base quantity	Name	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	s
Electrical Current	ampere	А
Thermodynamic temperature	kelvin	к
Amount of substance	mole	mol
Luminous intensity	candela	cd

Stoichiometry

- Stoichiometry uses the quantitative relationships between amounts of reactants and products in a chemical reaction
- Avogadro's constant,
 6.02x10²³mol⁻¹, enables us to make comparisons between chemical species

Multiplication Factor	Prefix S	Symbol
1,000,000,000 = 10 ⁹	giga	G
1,000,000 = 10 ⁶	mega	M
1,000 = 10 ⁻³ 100 = 10 ⁻²	kilo	k
100 = 10 ⁻²	hecto	h
1 = 1		
$0.01 = 10^{-2}$	centi	С
$0.001 = 10^{-3}$	milli	m
0.000001 = 10 ⁻⁶	micro	μ
0.000000001 = 10 ⁻⁹	nano	'n

Relative Atomic Mass, A_r


- The periodic table tells you the relative atomic mass of each element
 - ▶ This is the mass of an element relative to a 12th of the mass of ¹²C.
 - It is a relative value, which means it has no units.
- Relative atomic mass has the symbol 'A_r'

- For example carbon: A_r(C) = 12.01
 - The reason it isn't a whole number is due to isotopes

Relative Atomic Mass, A_r

 Relative abundance of each isotope is a measure of the percentage that occurs in a sample of the element

Isotopic Abundance of Chlorine

Relative Molecular or Formula Mass, M_r

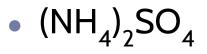
- Relative Molecular Mass is calculated by adding up the A_r for each atom in a molecule.
- The related term relative formula mass refers to the relative mass of one unit of a formula and is used for empirical formulas

No units as this is a ratio

Calculating M_r

• HCl

- A_r(H) = 1.01
- $A_r^{(Cl)} = 35.45$
- $M_r = 1.01 + 35.45 = 36.46$
- C_2H_4


D

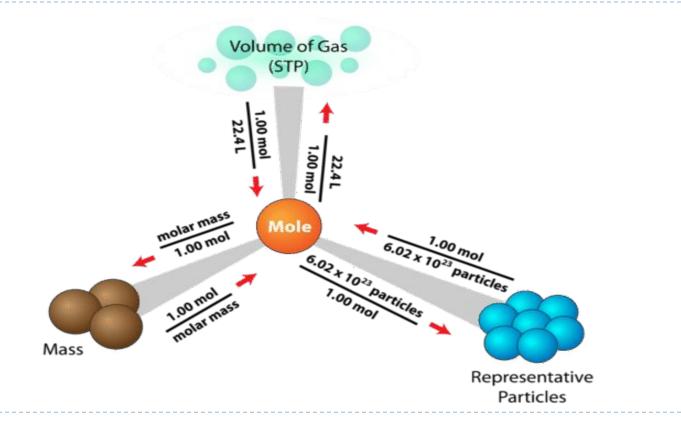
- $A_{r}(C) = 12.01$
- A_r (H) = 1.01
- $M_r = 2 \times 12.01 + 4 \times 1.01$ = 16.06

- H_2SO_4
 - A_r(H) = 1.01
 A_r(S) = 32.06
 - $A_r(O) = 16.00$
 - $M_{r}^{'} = 2 \times 1.01 + 32.06 + 4 \times 16.00$ = 98.08
- Mg(OH)₂
 - Ar(Mg) = 24.31
 - Ar(O) = 16.00
 - Ar (H) = 1.01
 - M_r = 24.31 + 2x16.00 + 2x1.01 = 58.33

Calculate M_r for:

• Br₂

• C₃H₈


• C₆H₁₂O₆

Molar Mass

 Molar mass is the mass of one mole of a substance. It has the units of grams per mole, g mol⁻¹

Element	Molar Mass
H ₂ O	2(1.0) + 16.0 = 18.0 g/mol
(NH ₄) ₂ CrO ₄	2(14.0)+8(1.0)+52.0+4(16.0) = 152 g/mol
Ba(NO ₃) ₂	137.3 + 2(14.0) + 6 (16.0) = 261.3 g/mol

Mole Calculations

Types of Formulas

- Qualitative analysis: focuses on determining which elements are present
- Quantitative analysis: focuses on determining the relative masses of elements allowing to determine the exact composition
- Empirical Formula: simplest whole-number ratio of atoms or amount of each element present in a compound
- Molecular Formula: the actual number of atoms or amount of elements in one structural unit or one mole of the compound
 - Empirical formulas and molecular formulas can be the same
 - Because of their structure, ionic (and giant covalent) compounds do not form molecules so empirical formula is the only one relevant

Empirical formula: Table summary

Þ

Name of compound	Empirical formula	Molecular formula
Hydrogen peroxide	HO	H ₂ O ₂
Water	H ₂ O	H ₂ O
Glucose	CH ₂ O	C ₆ H ₁₂ O ₆
Oxalic acid	HCO ₂	H ₂ C ₂ O ₄
Ethanol	C ₂ H ₆ O	C ₂ H ₆ O
Ethane	CH ₃	C ₂ H ₆
Ethylene	CH ₂	C ₂ H ₄
Caffeine	C ₄ H ₅ N ₂ O	C ₈ H ₁₀ N ₄ O ₂

6/6

Percentage Composition by Mass

 If we divide the total mass of each element in a compound by the number of atoms

• For example ethanol, C_2H_5OH , $M_r = 46.08$

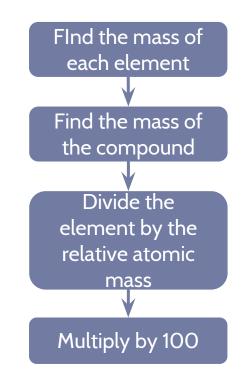
	С	Н	0
Number Present	2	6	1
Multiply by A _r	2 x 12.01 = 24.02	6 x 1.01 = 6.06	1 x 16.00 = 16.00
Divide by M_r , convert to %	24.02/46.08 x 100 = 52.1%	6.06/46.08 x 100 = 13.1%	16.00/46.08 x 100 = 34.7%

Calculate % composition by mass for:

3. $CuSO_4.5H_2O$

2. Mg(OH)₂

H₂O

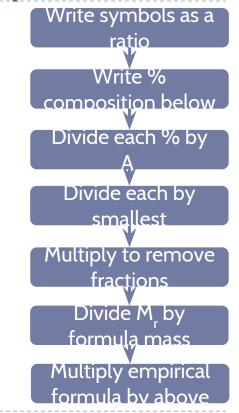

1.

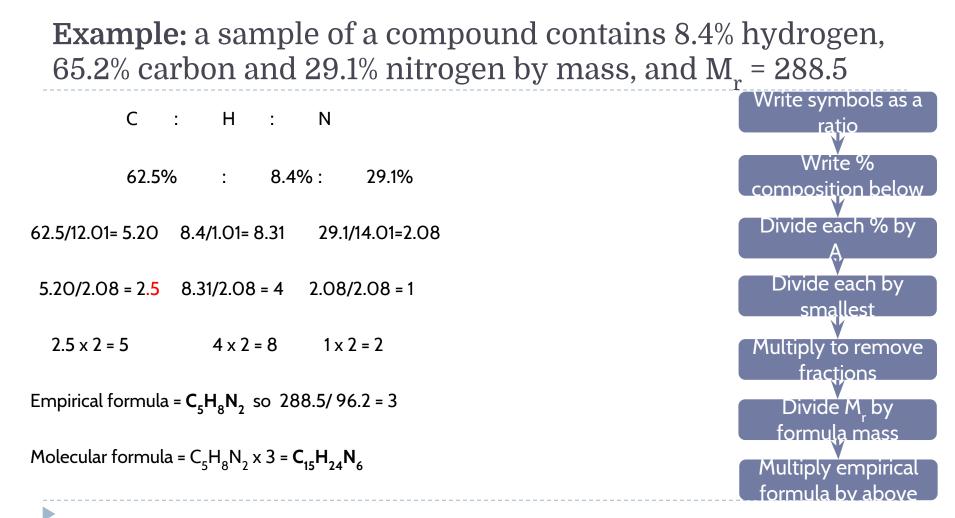
Þ

4. $C_{12}H_{22}O_{11}$

Example: Calculate the percentage by mass of sulfur in H_2SO_4

 H_2SO_4 2(H) = 2(1.01) = 2.021(S) = 1(32.06) = 32.064(O) = 4(16.00) = 64.0098.08 %S = 32.06 x 100% = 32.69% 98.08

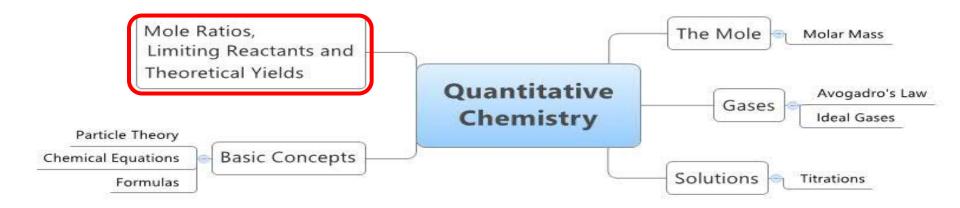



Example: A sample of a compound contains 20% hydrogen and 80% carbon by mass and $M_r = 30.08$

C : H 80% : 20% 80/12.01 = 6.67: 20/1.01 = 20 6.67/6.67 = 1 : 20/6.67 = 3 n/a since no awkward decimals above

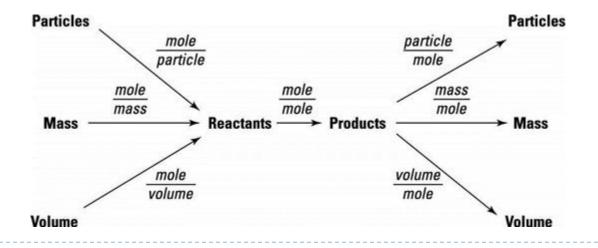
Empirical formula = **CH**₃: 30.08/(12.01 + 3 x 1.10) = 2

Molecular formula = $CH_3 \times 2 = C_2H_6$


Lesson 3

Mole Ratios and Theoretical Yields

We Are Here


Þ

Stoichiometry

D

- Stoichiometry is the quantitative method of examining relative amounts of reactants and products
- Percentage yield is vital in monitoring the efficiency and profitability of industrial processes

Mole Ratios

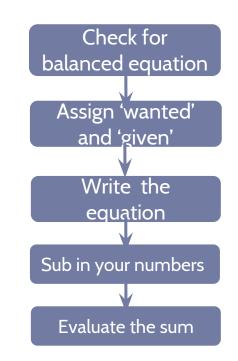
- This is the ratio of one compound to another in a balanced equation.
- ► For example, in the equation

$$\mathbf{2} \operatorname{H}_{2} + \operatorname{O}_{2} \rightarrow \mathbf{2} \operatorname{H}_{2} \operatorname{O}$$

- Hydrogen, oxygen and water are present in 2:1:2 ratio.
 - 0.2 mol of H₂ reacts with 0.1 mol of O₂ to make 0.2 mol H₂O
 - 5 mol of H₂ reacts with 2.5 mol of O₂ to make 5 mol of H₂O
 - To make 4 mol of H_2O you need 4 mol of H_2 and 2 mol of O_2

Mole Ratios in Calculations

The mole ratio!


$n(wanted) = n(given) \times \frac{wanteds}{givens}$

- wanted = the substance you want to find out more about
- given = the substance you are given the full info for
- n(wanted) = the number of moles you are trying to find out
- n(given) = the number of moles of you are given in the question
- wanteds = the number of wants in the balanced equation
- givens = the number of givens in the balanced equation

Example 1

What quantity of Al(OH)₃ in moles is required to produce 5.00 mol of H₂O?
 2 Al(OH)₃ + 3 H₂SO₄ → Al₂(SO₄)₃ + 3 H₂O

n(wanted) = n(given) ×
$$\frac{wanteds}{givens}$$

• H₂O is given, Al(OH)₃ is wanted.
• n(Al(OH)₃) = 5.00 x (2/3)=3.33 mol

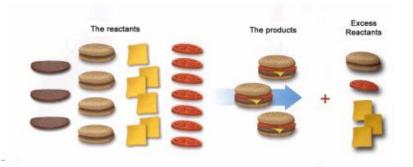
Example 2

 What quantity of O₂ in moles is required to fully react with 0.215 mol of butane (C₄H₁₀) to produce water and carbon dioxide?

$$2 C_4 H_{10} + 13 O_2 \rightarrow 8 CO_2 + 10 H_2 O_2$$

$$n(wanted) = n(given) \times \frac{wanteds}{givens}$$

$$C_4H_{10} \text{ is given, } O_2 \text{ is wanted.}$$


$$n(O_2) = 0.215 \times (13/2)$$

$$n(O_2) = \underline{1.40 \text{ mol}}$$

Limiting Reagant

- In a reaction, we can describe reactants as being 'limiting' or in 'excess'
 - Limiting this is the reactant that runs out
 - Excess the reaction will not run out of this reactant
- The limiting reactant will be your 'given' in further calculations:
 - Determining amounts of products formed
 - Determining amounts of other reactants used

Limiting Reagent

$$\mathbf{2} \operatorname{H}_{2} + \operatorname{O}_{2} \rightarrow \mathbf{2} \operatorname{H}_{2} \operatorname{O}$$

- ▶ For example, if you have 2.0 mol H₂ and 2.0 mol O₂
 - H_2 is the limiting reactant it will run out
 - O_2^{-} is present in excess there is more than enough
- To determine this, divide the quantity of each reactant by its coefficient in the equation. The smallest number is the limiting reactant:
 - H₂: 2.0 / 2 = 1.0 smallest therefore limiting
 - O₂²: 2.0 / 1 = 2.0

Example 1: What quantity, in moles, of MgCl₂ can be produced by reacting 10.5 g magnesium with 100 cm³ of 2.50 mol dm⁻³ hydrochloric acid solution?

- Mg + 2HCl \rightarrow MgCl₂ + H₂
- Determine limiting reagent:
 - Mg: (10.5g / 24.31g) = 0.432 mol
 - HCl: (0.100dm³ x 2.50mol dm⁻³)0.25mol
 - 0.250/2(coefficient) = <u>0.125mol</u> (smallest therefore is L.R.)

Mg + 2HCl \rightarrow MgCl₂ + H₂

Initial	0.432 mol	0.250 mol	0 mol	0 mol
Change	-0.125 mol	-(2)0.125 mol	+0.125 mol	+0.125mol
Final	0.307 mol	0	0.125mol	0.125mol

Example 2 : What quantity, in moles, of carbon dioxide would be formed from the reaction of 12.0 mol oxygen with 2.00 mol propane, and how much of which reactant would remain?

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$$

- Determine limiting reagent:
 - ► C₃H₈: 2.00 mol
 - O₂: 12.0mol/5(coefficient) = 2.4 mol

$$C_3H_8$$
 + $5O_2 \rightarrow 3CO_2$ + $4H_2O$

Initial	2.00 mol	12.0 mol	0 mol	0 mol
Change	-2.00 mol	-5 (2.00mol)	+3 (2.00 mol)	+4 (2.00 mol)
Final	0 mol	2.00 mol	6.00 mol	8.00 mol

Theoretical, actual and percentage yield

- Theoretical yield is the maximum amount of product you would make if the limiting reactant was fully converted to product.
 - Use the limiting reactants maths to work this out
- Actual yield is the actual amount of product collected in after a reaction
 - Can be different from the theoretical yield

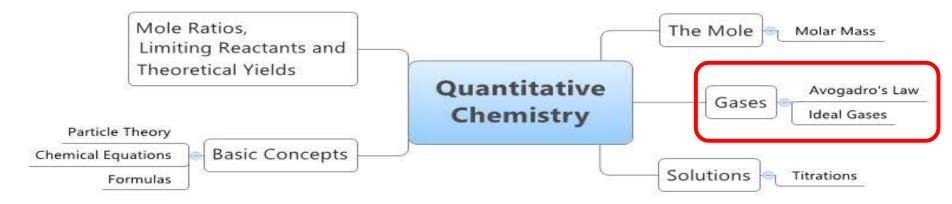
$$\%$$
 yield = $\frac{actual \ yield}{theoretical \ yield} \times 100$

Percent Yield

Percent Yield

Percent Yield =
$$\left(\frac{\text{Actual Yield}}{\text{Theoretical Yield}}\right)$$
 100%

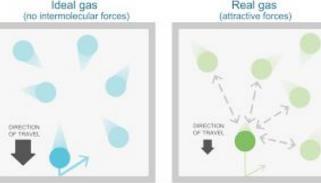
Theoretical yield is the mass of product that you calculate using stoichiometry; it's what you are supposed to be able to get from the reaction (theoretically). Actual yield is the mass of product that you actually obtain from the reaction in the lab.


Lesson 9

Molar Volumes of Gases

We Are Here

Þ



Molar Volume of a Gas

- The kinetic theory of gases is a model used to explain and predict the behavior of gases at a microscopic level
- Postulates of assumptions that must be true for this theory to hold:
 - 1. Gases are made up of very small particles, separated by large
 - distances. Most of the volume occupied by gas is empty space 2. Gaseous particles are constantly moving in a straight lines, but random directions
 - Gaseous particles undergo elastic collisions with each other and the walls of the container. No loss of kinetic energy occurs
 Gaseous particles exert no force of attraction on other gases

Molar Volume of a Gas

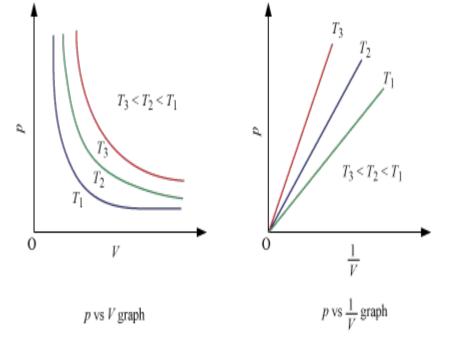
- Under conditions of STP, an ideal gas obeys these postulates
- At high temperature and low pressure, gases respond in ways that depart from the ideal gas behavior and exhibit behaviors of real gases

The Molar Volume of an Ideal Gas

- At standard temperature and pressure:
 - (STP, T = 273K, P = 1.01x10⁵ Pa or 100kPa)
 - Molar Volume of Ideal Gas = 22.7 dm³ mol⁻¹

Avogadro's Law

D

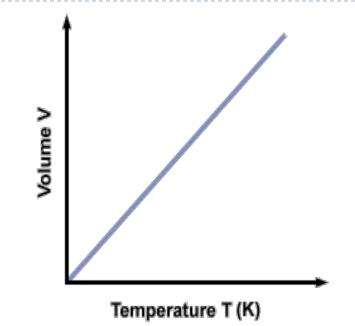

 Calculate the moles of oxygen in a 6.73dm³ sample of oxygen gas at STP

 $\frac{V_1}{n_1} = \frac{V_2}{n_2}$

Boyle's Law

Vα

 $P_1V_1=P_2V_2$ At a constant temperature, the volume of a fixed mass of an ideal gas is inversely proportional to its pressure



Charles' Law

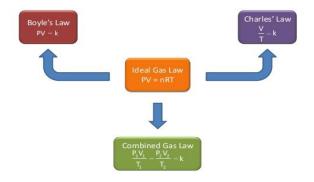
$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

The volume of a fixed mass of an ideal gas at a constant pressure is directly proportional to its kelvin temperature

V α Τ

Gay-Lussac's Law

 P_1 T_1 T_2 The pressure of a fixed mass of an ideal gas at a constant volume is directly proportional to its kelvin temperature


 $P \propto T$

Pressure Temperature T (K)

Combined Gas Law Equation

$$\frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}}$$

All the Law's Combined

Ideal Gas Law

 Relationship between pressure, volume, temperature, and the amount, in mol, of gas particles

PV = nRT

R=8.31 JK⁻¹mol⁻¹

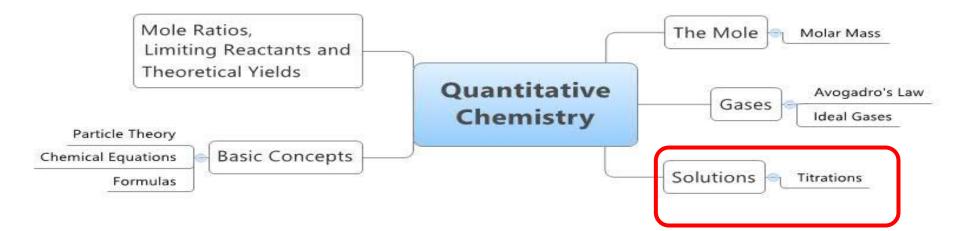
Conversions

1,000,000cm³ = 1m³

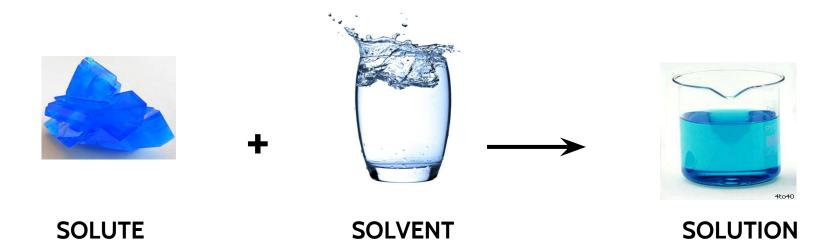
- To convert m³ to cm³ multiply by 1,000,000
- To convert cm^3 to m^3 divide by 1,000,000

1000dm³= 1m³

- To convert m³ to dm³ multiply by 1000
- To convert dm³ to m³ divide by 1000


Lesson 5

Solutions

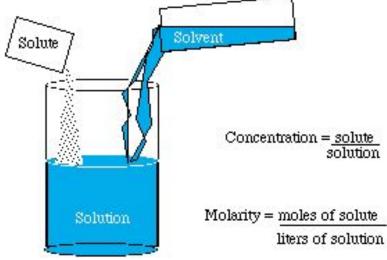


We Are Here

Þ

Solutions Basics

A solution is a homogeneous mixture of a solute that has been dissolved in a solvent. When dissolved in water the solution is described as an aqueous solution.


Concentration

This is the strength of a solution.

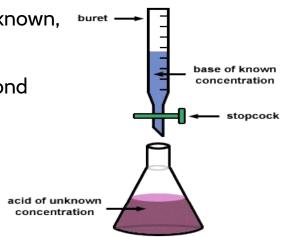
Concentration/Molarity

The molar concentration of a solution is defined as the amount (in mol) of a substance dissolved in dm³ of a solvent

Concentration/Molarity

- Units:
 - mass per unit volume, g dm⁻³
 - mole per unit volume, mol dm⁻³
 - Parts per million(ppm)
 - One part in 1 x 10⁶ parts
 - 1 ppm=1 mg dm⁻³

ppm = $\frac{\text{mass of solute}}{\text{mass of solution}} \times 10^{6}$

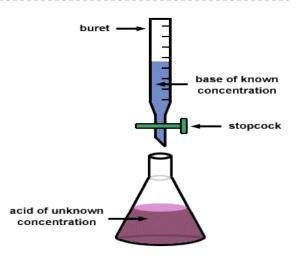

 Square brackets are used to denote molar concentration

Titrations

Titration involves using a solution whose concentration is known, to find the concentration of another which isn't known.

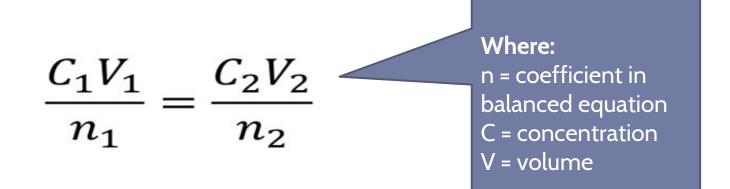
Mair

- An exact volume of one solution is in a conical flask, a second solution is added to it from a burette.
- When the reaction reaches its 'endpoint', we record how much was added
 - There is always some kind of indicator which changes colour to tell us when we have reached the end.

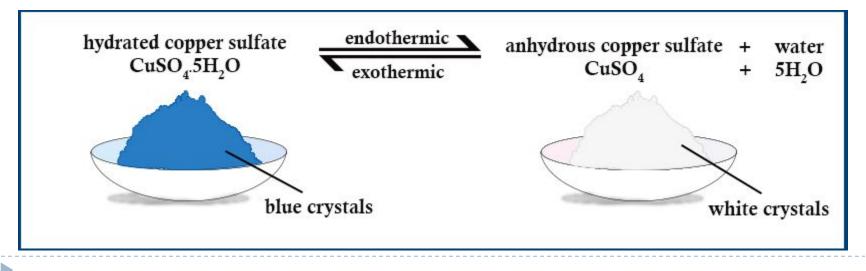


- Determine the concentration of acids/bases
- Determine concentrations of other reactants
- Following the rate of a reaction
- Determining equilibrium constants

Titration


- Titration involves using a solution whose concentration is known, to find the concentration of another which isn't known.
- An exact volume of one solution is in a conical flask, a second solution is added to it from a burette.
- It doesn't matter which solution is in the burette, and which is in the conical flask.
- When the reaction reaches its 'endpoint', we record how much was added
 - There is always some kind of indicator which changes colour to tell us when we have reached the end.

Mair


- Determine the concentration of acids/bases
- Determine concentrations of other reactants
- Following the rate of a reaction
- Determining equilibrium constants

The mathematics of titrations

Water of Crystallisation

- Some substances crystallise with water, this is called water of crystallisation
- These substances are described as hydrated

Airbag Stoichiometry